01 June 2011
High-frequency electrical stimulation in the nucleus accumbens of morphine-treated rats suppresses neuronal firing in reward-related brain regions
Wen-han HuABE, Yong-feng BiBCD, Kai ZhangEF, Fan-gang MengEF, Jian-guo ZhangADGDOI: 10.12659/MSM.881802
Med Sci Monit 2011; 17(6): BR153-160
Abstract
Background: Previous studies have reported that high-frequency stimulation (HFS) in the nucleus accumbens (NAc) is a potential treatment modality for drug craving and relapse. We aimed to explore the electrophysiological changes in reward-related brain regions during NAc stimulation and reveal the effects of stimulation frequency and target changes on NAc neuronal activities.
Material/Methods: Twenty-eight rats were randomized into saline (n=8) and morphine (n=20) groups. The morphine group was further divided into core (n=10, only the core of the NAc was stimulated) and shell (n=10, only the shell of the NAc was stimulated) subgroups. Conditioned place preference (CPP) behavior of the rats was evaluated to confirm morphine preference after morphine injection and CPP training for 10 days. We recorded NAc neuronal responses to NAc core stimulation at different frequencies, as well as changes in VP and VTA neuronal firing during NAc core stimulation, and changes in NAc neuronal firing during NAc shell stimulation.
Results: The results indicate that high frequency stimulation was more effective in suppressing NAc neuronal activities than low frequency stimulation and that core stimulation was more effective than shell stimulation. Most VP neurons were inhibited by NAc core stimulation, while VTA neurons were not.
Conclusions: The results suggest that electrical stimulation in the NAc can suppress neuronal firing in reward-related brain regions. The stimulation might be frequency- dependent in suppressing neuronal firing. The core and shell of the NAc play different roles in suppressing NAc neuronal firing as 2 stimulating targets.
Keywords: Neurons - physiology, Nucleus Accumbens - physiology, Morphine - pharmacology, Electrodes, Electric Stimulation, Conditioning (Psychology), Artifacts, Action Potentials - drug effects, Reward, Ventral Tegmental Area - drug effects
Editorial
01 October 2024 : Editorial
Editorial: Potentials and Pitfalls in Targeting Glucagon-Like Peptide-1 (GLP-1) in the Management of Increasing Levels of ObesityDOI: 10.12659/MSM.946675
Med Sci Monit 2024; 30:e946675
In Press
Clinical Research
Minimally Invasive Combined Medial and Lateral Approach for Treating Displaced Scapular Body and Neck Fract...Med Sci Monit In Press; DOI: 10.12659/MSM.945535
Clinical Research
Evaluation of Neuromuscular Blockade: A Comparative Study of TOF-Cuff® on the Lower Leg and TOF-Scan® on th...Med Sci Monit In Press; DOI: 10.12659/MSM.945227
Clinical Research
Acupuncture Enhances Quality of Life and Disease Control in Chronic Spontaneous Urticaria Patients on Omali...Med Sci Monit In Press; DOI:
Review article
Sex and Population Variations in Nasopalatine Canal Dimensions: A CBCT-Based Systematic ReviewMed Sci Monit In Press; DOI:
Most Viewed Current Articles
17 Jan 2024 : Review article 6,057,160
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
14 Dec 2022 : Clinical Research 1,850,676
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
16 May 2023 : Clinical Research 693,861
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
07 Jan 2022 : Meta-Analysis 258,144
Efficacy and Safety of Light Therapy as a Home Treatment for Motor and Non-Motor Symptoms of Parkinson Dise...DOI :10.12659/MSM.935074
Med Sci Monit 2022; 28:e935074