01 October 2011
Contralateral suppression of otoacoustic emissions: Input-Output functions in neonates
Ualace de Paula CamposABCEF, Stavros HatzopoulosCDE, Krzysztof KochanekD, Lech SliwaD, Henryk SkarzynskiDG, Renata Mota Mamede CarvalloDDOI: 10.12659/MSM.881981
Med Sci Monit 2011; 17(10): CR557-562
Abstract
Background: The literature suggests that contralateral acoustic stimulation (CAS) alters the amplitude of the distortion product otoacoustic emissions (DPOAEs), but it is still unknown whether the DPOAE Input/Output (I/O) functions are also affected. To elucidate this aspect of the DPOAEs, the present study assessed the effects of CAS on DPOAE I/O functions at the frequencies of 2 kHz and 4 kHz, in a sample of term neonatal subjects.
Material/Methods: Sixty randomly selected neonates were included in the study. The DPOAE I/O functions were obtained at 2 kHz and 4 kHz, in the presence of a 60 dB SPL broad band-contralateral white noise, using the TDH39 headphones contralaterally. DPOAEs were recorded up to a stimulus level of L2=35 dB peSPL.
Results: Significant DPOAE amplitude suppression effects were observed at various L2 stimulus levels for both tested frequencies at 2 and 4 kHz. In contrast, the corresponding DPOAE slopes showed various alterations that were not statistically significant.
Conclusions: The data from the present study show that contralateral acoustic stimulation significantly affects only the amplitude of the DPOAE I/O functions; the slope is affected, but not significantly. This observation can shed light on the nature of CAS, suggesting that the latter is primarily a linear phenomenon without the cochlear compression and non-linear components seen in the healthy cochlea. From the available data it is not possible to infer whether the sample size has influenced the obtained results and the study should be repeated with a larger sample size and assessing more frequencies.
Keywords: Italy, Infant, Newborn, Hair Cells, Auditory, Outer - physiology, Cochlea - physiology, Auditory Threshold - physiology, Analysis of Variance, Acoustic Stimulation - methods, Models, Biological, Otoacoustic Emissions, Spontaneous - physiology
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Clinical Research
Impact of Smovey Vibration Versus Dumbbell Resistance on Muscle Activation in WomenMed Sci Monit In Press; DOI: 10.12659/MSM.946567
Clinical Research
Five-Year Impact of Weight Loss on Knee Pain and Quality of Life in Obese PatientsMed Sci Monit In Press; DOI: 10.12659/MSM.946550
Clinical Research
Butorphanol Tartrate Nasal Spray for Post-Cesarean Analgesia and Prolactin SecretionMed Sci Monit In Press; DOI: 10.12659/MSM.945224
Database Analysis
Role of the Carhart Effect and Outcomes from Surgery: A Retrospective Study of 532 Patients with Conductive...Med Sci Monit In Press; DOI: 10.12659/MSM.947061
Most Viewed Current Articles
17 Jan 2024 : Review article 6,963,045
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 700,086
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 23,449
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 18,141
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912