28 June 2012
Altered expression of base excision repair genes in response to high glucose-induced oxidative stress in HepG2 hepatocytes
Jing PangABCDEFG, Chao XiBCEFG, Yang DaiBC, Huan GongBC, Tie-mei ZhangADEFGDOI: 10.12659/MSM.883206
Med Sci Monit 2012; 18(7): BR281-285
Abstract
Background: It is widely accepted that chronic hyperglycemia induces DNA oxidative damage in type 2 diabetes, but little is known about the effect of hyperglycemia on the DNA repair system which plays a critical role in the maintenance of genomic DNA stability in diabetes.
Material/Methods: To investigate the alteration of base excision repair (BER) genes under hyperglycemia, the relative expression of the mRNAs of the BER genes – ogg1, polbeta, lig3, xrcc1, and parp1 – were quantified using real-time PCR in HepG2 hepatocytes incubated with 5.5 mM or 30 mM glucose.
Results: High levels of glucose induced ROS accumulation and DNA damage, paralleling the dynamic alterations of BER mRNA expression. Compared to 5.5 mM glucose-treated cells, ogg1 and polbeta mRNA expression transiently increased at day 1 and decreased after day 4 in cells exposed to 30 mM glucose. Exposure to 30 mM glucose increased the activity of PARP1, which led to reduced cellular NAD content and insulin receptor phosphorylation.
Conclusions: Exposure to high concentrations of glucose initially led to the increased expression of BER mRNAs to counteract hyperglycemia-induced DNA damage; however, long-term exposure to high glucose concentrations reduced the expression of mRNA from BER genes, leading to accumulated DNA damage.
Keywords: RNA, Messenger - metabolism, Poly(ADP-ribose) Polymerases - metabolism, Phosphorylation - drug effects, Oxidative Stress - genetics, NAD - metabolism, Insulin - pharmacology, Hepatocytes - metabolism, Glucose - pharmacology, Gene Expression Regulation, Neoplastic - drug effects, Enzyme Activation - drug effects, DNA Repair - genetics, DNA Damage - genetics, Reactive Oxygen Species - metabolism, Receptor, Insulin - metabolism, Transcription, Genetic - drug effects
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Clinical Research
Impact of Periodontal Treatment on Early Rheumatoid Arthritis and the Role of Porphyromonas gingivalis Anti...Med Sci Monit In Press; DOI: 10.12659/MSM.947146
Clinical Research
C-Reactive Protein, Uric Acid, and Coronary Artery Ectasia in Patients with Coronary Artery DiseaseMed Sci Monit In Press; DOI: 10.12659/MSM.947158
Clinical Research
Effects of Remote Exercise on Physical Function in Pre-Frail Older Adults: A Randomized Controlled TrialMed Sci Monit In Press; DOI: 10.12659/MSM.947105
Database Analysis
Development and Validation of a Competitive Risk Model in Elderly Patients with Transitional Cell Bladder C...Med Sci Monit In Press; DOI: 10.12659/MSM.946332
Most Viewed Current Articles
17 Jan 2024 : Review article 6,964,204
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 700,526
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 24,009
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 18,806
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912