21 November 2015 : Animal Research
Treatment Efficacy of NGF Nanoparticles Combining Neural Stem Cell Transplantation on Alzheimer’s Disease Model Rats
Yan ChenCD, Cuihuan PanDE, Aiguo XuanEF, Liping XuFG, Guoqing BaoAD, Feiei LiuBE, Jie FangCG, Dahong LongABCDOI: 10.12659/MSM.894567
Med Sci Monit 2015; 21:3608-3615
Abstract
BACKGROUND: Alzheimer’s disease (AD) is the most common type of dementia. It causes progressive brain disorder involving loss of normal memory and thinking skills. The transplantation of neural stem cells (NSCs) has been reported to improve learning and memory function of AD rats, and protects basal forebrain cholinergic neurons. Nerve growth factor – poly (ethylene glycol) – poly (lactic-co-glycolic acid)-nanoparticles (NGF-PEG-PLGA-NPs) can facilitate the differentiation of NSCs in vitro. This study thus investigated the treatment efficacy of NGF-PEG-PLGA-NPs combining NSC transplantation in AD model rats.
MATERIAL AND METHODS: AD rats were prepared by injection of 192IgG-saporin into their lateral ventricles. Embryonic rat NSCs were separated, induced by NGF-PEG-PLGA-NPs in vitro, and were transplanted. The Morris water-maze test was used to evaluate learning and memory function, followed by immunohistochemical staining for basal forebrain cholinergic neurons, hippocampal synaptophysin, and acetylcholine esterase (AchE) fibers.
RESULTS: Rats in the combined treatment group had significantly improved spatial learning ability compared to AD model animals (p<0.05). The number of basal forebrain cholinergic neurons, hippocampal synaptophysin, and AchE-positive fibers were all significantly larger than in the NSC-transplantation group, with no difference from control animals.
CONCLUSIONS: NGF-PEG-PLGA-NPs plus NSC transplantation can significantly improve learning and memory functions of AD rats, replenish basal forebrain cholinergic neurons, and help form hippocampal synapses and AchE-positive fibers. These findings may offer practical support for and insight into treatment of Alzheimer’s disease.
Keywords: Alzheimer Disease - therapy, Basal Forebrain - physiopathology, Brain - physiopathology, Cholinergic Neurons - pathology, Hippocampus - metabolism, Learning, Memory, Nanoparticles - therapeutic use, Nerve Growth Factor - pharmacology, Neural Stem Cells - transplantation, Polyesters, Polyethylene Glycols
Editorial
01 October 2024 : Editorial
Editorial: Potentials and Pitfalls in Targeting Glucagon-Like Peptide-1 (GLP-1) in the Management of Increasing Levels of ObesityDOI: 10.12659/MSM.946675
Med Sci Monit 2024; 30:e946675
In Press
Clinical Research
Minimally Invasive Combined Medial and Lateral Approach for Treating Displaced Scapular Body and Neck Fract...Med Sci Monit In Press; DOI: 10.12659/MSM.945535
Clinical Research
Evaluation of Neuromuscular Blockade: A Comparative Study of TOF-Cuff® on the Lower Leg and TOF-Scan® on th...Med Sci Monit In Press; DOI: 10.12659/MSM.945227
Clinical Research
Acupuncture Enhances Quality of Life and Disease Control in Chronic Spontaneous Urticaria Patients on Omali...Med Sci Monit In Press; DOI:
Review article
Sex and Population Variations in Nasopalatine Canal Dimensions: A CBCT-Based Systematic ReviewMed Sci Monit In Press; DOI:
Most Viewed Current Articles
17 Jan 2024 : Review article 6,057,160
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
14 Dec 2022 : Clinical Research 1,850,676
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
16 May 2023 : Clinical Research 693,861
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
07 Jan 2022 : Meta-Analysis 258,144
Efficacy and Safety of Light Therapy as a Home Treatment for Motor and Non-Motor Symptoms of Parkinson Dise...DOI :10.12659/MSM.935074
Med Sci Monit 2022; 28:e935074