08 January 2020 : Animal Research
Dexmedetomidine Post-Conditioning Alleviates Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting High Mobility Group Protein B1 Group (HMGB1)/Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Signaling Pathway
Yongyi Zhai1ADE, Yulin Zhu2BCF, Jingying Liu3EF, Kun Xie4DEF, Jingui Yu5BCD, Lingzhi Yu6BF, Hongyan Deng7AFG*DOI: 10.12659/MSM.918617
Med Sci Monit 2020; 26:e918617
Abstract
BACKGROUND: Cerebral ischemia-reperfusion injury is a pivotal cause of deaths due to cerebrovascular accident. Increased research efforts are needed to reveal the mechanism underlying its aggravation or alleviation. In this study, the effects of dexmedetomidine post-conditioning on the HMGB1/TLR4/NF-κB signaling pathway in cerebral ischemia-reperfusion rats was explored.
MATERIAL AND METHODS: Ninety rats were randomly divided into 5 groups – a sham group (Sham), a model group (I/R), a dexmedetomidine post-conditioning group (Dex), a recombinant high mobility group protein B1 group (rHMGB1), and a recombinant HMGB1+dexmedetomidine post-conditioning group (rHMGB1+Dex) – with 18 rats in each group. Longa grading, wet-dry weighing, TTC staining, HE staining, and immunohistochemical staining were used to assess brain damage. ELISA, RT-PCR, and Western blot analyses were performed to assess expression of IL-1β, TNF-α, IL-6, IL-8, HMGB1, TLR4, and NF-κB.
RESULTS: Compared with the I/R group, the neurological function score, brain water content, infarction area, and the number of COX-2- and IBA-1-positive cells in the Dex group were significantly lower, accompanied by downregulated expression of the HMGB1/TLR4/NF-κB pathway, alleviated inflammation, and oxidative stress injury in brain tissue. These trends were mostly reversed in the rHMGB1 group and rHMGB1+Dex group, but not in the Dex group. Furthermore, when compared to the Dex group, there were significant increases of H₂O₂, MDA, NO, IL-1β, TNF-α, IL-6, IL-8, HMGB1, TLR4, and p-P65 in the rHMGB1 group and rHMGB1+Dex group, in which a significant decrease of T-AOC, SOD, and p-IκBα was also detected.
CONCLUSIONS: Dexmedetomidine post-conditioning can alleviate cerebral ischemia-reperfusion injury in rats by inhibiting the HMGB1/TLR4/NF-κB signaling pathway.
Keywords: Dexmedetomidine, HMGB1 Protein, Brain Ischemia, NF-KappaB Inhibitor alpha
Editorial
01 April 2025 : Editorial
Editorial: Rapid Testing for the Avian Influenza A(H5N1) Virus is Urgently Required as Infections in Poultry and Dairy Cows are on the Rise, and so is Transmission to HumansDOI: 10.12659/MSM.949109
Med Sci Monit 2025; 31:e949109
In Press
Review article
Global Guidelines and Trends in HPV Vaccination for Cervical Cancer PreventionMed Sci Monit In Press; DOI: 10.12659/MSM.947173
Clinical Research
Serum Prolidase and Ischemia-Modified Albumin Levels in Neural Tube Defects: A Comparative Study of Myelome...Med Sci Monit In Press; DOI: 10.12659/MSM.947873
Clinical Research
Impact of Depression, Fatigue, and Pain on Quality of Life in Slovak Multiple Sclerosis PatientsMed Sci Monit In Press; DOI: 10.12659/MSM.947630
Clinical Research
Longitudinal Evaluation of Metabolic Benefits of Inactivated COVID-19 Vaccination in Diabetic Patients in T...Med Sci Monit In Press; DOI: 10.12659/MSM.947450
Most Viewed Current Articles
17 Jan 2024 : Review article 7,960,158
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 702,953
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 29,945
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 23,915
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912