03 December 2024 : Clinical Research
Machine Learning Models for Predicting 24-Hour Intraocular Pressure Changes: A Comparative Study
Chen Ranran12ACDEG, Lei Jinming3ACD, Liao Yujie12BC, Jin Yiping12BC, Wang Xue4CD, Li Hong1BD, Bi Yanlong5ACF*, Zhu Haohao12ABFGDOI: 10.12659/MSM.945483
Med Sci Monit 2024; 30:e945483
Table 2 Comparison of methods.
Accuracy | Specifity | 10-fold cross-validation | Precision | Sensitivity | F1-score | |
---|---|---|---|---|---|---|
SVM | 0.777 | 0.944 | 0.744 | 0.500 | 0.195 | 0.281 |
LR | 0.777 | 0.937 | 0.744 | 0.500 | 0.220 | 0.305 |
XGBoost | 0.886 | 0.972 | 0.872 | 0.857 | 0.585 | 0.696 |
KNN | 0.831 | 0.930 | 0.793 | 0.667 | 0.488 | 0.563 |
Naive Bayes | 0.712 | 0.797 | 0.671 | 0.415 | 0.370 | 0.391 |
SVM – support vector machines; LR – Logistic Regression; XGBoost – Extreme Gradient Boosting; KNN – K-Nearest Neighbors; Naive Bayes – Naive Bayes Classifier. |