Logo Medical Science Monitor

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo Medical Science Monitor Logo Medical Science Monitor Logo Medical Science Monitor

11 July 2022: Clinical Research  

Shoulder Injury Related to Vaccine Administration (SIRVA) in 16 Patients Following COVID-19 Vaccination Who Presented to Chiropractic, Orthopedic, and Physiotherapy Clinics in Hong Kong During 2021

Eric Chun-Pu Chu1ABCDEFG*

DOI: 10.12659/MSM.937430

Med Sci Monit 2022; 28:e937430

0 Comments

Abstract

BACKGROUND: Shoulder injury related to vaccine administration (SIRVA) occurs when an intramuscular deltoid injection is administered into the shoulder joint. This observational study describes clinical features in 16 patients with SIRVA following Coronavirus 2019 (COVID-19) vaccination who presented to chiropractic, orthopedic, and physiotherapy clinics in Hong Kong between January 1, 2021, and January 1, 2022.

MATERIAL AND METHODS: Adults age ≥18 with new-onset shoulder pain and imaging-confirmed shoulder pathology were retrospectively identified from 35 clinics. Patient demographics and clinical and vaccination details were extracted from the electronic medical record. Shoulder injury was determined by correlating clinical and imaging features.

RESULTS: Of 730 patients with shoulder pain, 16 SIRVA cases (mean age, 49±10 years, 75% female) were identified; (12/16, 75%) of patients received the Pfizer-BioNTech vaccine while (4/16, 25%) received Sinovac-CoronaVac. The most common diagnosis was adhesive capsulitis (10/16, 63%), followed by bursitis (3/16, 19%) and supraspinatus tear (3/16, 19%). Mean symptom onset was 3.5±2.5 days post-vaccination, and always occurred after the 2nd or 3rd vaccination, involving reduced shoulder range of motion (ROM). Mean baseline pain was 8.1±1 (out of 10). All patients received conservative care (eg, exercise, manual therapies). At 3-month follow-up, mean pain reduced to 2.4±1.4; all patients had normal shoulder ROM.

CONCLUSIONS: In the past 2 years, millions of intramuscular COVID-19 vaccinations have been administered. It is important that clinicians are aware of SIRVA as a cause of new symptoms of shoulder injury and should ask the patient about recent vaccinations, including for COVID-19.

Keywords: COVID-19 vaccine, Injection Site Reaction, shoulder pain

Background

Millions of doses of the Coronavirus 2019 (COVID-19) vaccine have been widely administered with efficacy in combating the COVID-19 pandemic [1]. In Hong Kong, the location of the current study, 65% of the population had received at least 1 dose of the COVID-19 vaccine by January 1, 2022 [2]. While local vaccine injection site reactions of pain, redness, and swelling have been well described, these symptoms are generally not serious and are self-limited [3]. Conversely, a potentially more problematic shoulder injury related to vaccine administration (SIRVA) has seldom been described in the literature in relation to COVID-19 vaccination.

SIRVA is defined as shoulder pain and decreased range of motion after receiving a vaccine intended for intramuscular delivery in the upper arm [4,5]. This condition is becoming recognized as a potential vaccine-related adverse effect and has been most often associated with influenza vaccine administration [4,5]. One potential cause of SIRVA is accidental injection into the subdeltoid bursa, causing bursitis, tendinitis, and/or capsulitis [4].

According to a recent systematic review, SIRVA typically occurs in middle-aged adults (median age 51) and tends to affect females (73% of cases) [5]. The most common diagnoses include bursitis, adhesive capsulitis, and rotator cuff tear [4,5]. SIRVA is typically treated conservatively, which leads to full recovery in 3–56% of patients [5]. Unfortunately, there are limited data regarding the optimal treatment strategy for SIRVA and typical duration of symptoms [4,5].

However, to the best of our knowledge, only 20 cases of SIRVA after COVID-19 vaccination have been reported according to a PubMed search on April 14, 2022 using the terms “shoulder injury related to vaccine administration” and “COVID” [6–14]. Given this limited number of cases, little is known about the clinical features and risk factors for SIRVA after COVID-19 vaccination. Based on the limited data, it appears that SIRVA may occur independent of the type of COVID-19 vaccine used [6–14]. Further, among published cases, adhesive capsulitis and bursitis appear to be more common, with rotator cuff tear being uncommon [6–14].

A thorough shoulder examination is requisite for diagnosis of SIRVA, and includes inspection, palpation, and range of motion testing [4]. Specialized provocative tests are of uncertain utility in suspected cases of SIRVA. Patients with SIRVA often have tenderness at the injection site and a global reduction in shoulder range of motion affecting all planes of motion [4]. MRI may be useful to evaluate for soft-tissue pathology [4], and can demonstrate findings consistent with inflammation [5]. In the current study, clinical diagnoses of SIRVA based on pain and limited range of motion were compared to and supported by imaging findings.

Despite an increase in overall awareness of SIRVA, few studies have evaluated SIRVA associated with COVID-19 vaccination. Therefore, this observational clinical study describes the presentation and clinical features of SIRVA in 16 patients following COVID-19 vaccination who presented to chiropractic, orthopedic, and physiotherapy clinics in Hong Kong between January 1, 2021, and January 1, 2022.

Material and Methods

STUDY DESIGN:

The Ethics Committee of the Chiropractic Doctors Association of Hong Kong approved of this study (Causeway Bay, Hong Kong; IRB ID: CDA20221202). Written informed consent for patient information and images to be published was provided by the patient(s) or a legally authorized representative. Data for patients presenting with new shoulder pain were retrospectively collected by querying an electronic medical records system shared between 35 affiliated chiropractic, orthopedic, and physiotherapy clinics in Hong Kong. Data were extracted in March through April 2022 with a search window of January 1, 2021, to January 1, 2022.

PARTICIPANTS:

Inclusion criteria were patients age ≥18 years with a new concern of shoulder pain, a history of COVID-19 vaccination within 1 month preceding shoulder pain onset, and shoulder pathology confirmed via imaging. Exclusion criteria were a history of influenza vaccination within 1 year of shoulder pain onset, shoulder injury within 1 year preceding shoulder pain onset, shoulder pain in the context of an inconsistent injection site (shoulder pain contralateral to injection site or in a non-shoulder region), radiological features of severe, recent, and/or pre-existing shoulder pathology or non-SIRVA injury including shoulder fracture, tumor, and severe degenerative disease. In addition, patients in which the vaccination history could not be confirmed were excluded. The study flowchart is shown in Figure 1.

VARIABLES:

Data regarding sex, age, laterality of shoulder affected, vaccine dose, duration between vaccine administration and shoulder pain onset, type of vaccine (Pfizer-BioNTech or Sinovac-CoronaVac), active shoulder range of motion, pain severity (using a visual analog scale of 0–10; 10 being most severe), and type of treatment (medication, steroid injection, manual therapy, exercise therapy, or surgery) were extracted from the electronic medical record. The primary shoulder injury diagnosis (adhesive capsulitis, subacromial-subdeltoid bursitis, or rotator cuff tear) was determined by correlating the clinical and imaging features.

Magnetic resonance imaging (MRI) and shoulder radiographs were interpreted by board-certified medical radiologists. Subacromial and subdeltoid bursitis were defined as distended fluid-filled structures between the deltoid muscle, acromion, and supraspinatus and infraspinatus tendons on MRI [14]. Rotator cuff tears were assessed using fat-suppressed, intermediate-weighted/gradient echo sequences, in which the hyperintense signal region within the tendon frequently corresponded to fluid on T2-weighted imaging [12].

Diagnosis of adhesive capsulitis was based limited active and passive range of motion and supported by evidence on MRI. Signs of capsulitis on MRI included the subcoracoid triangle sign, joint capsule thickening, coracohumeral ligament thickening >4 millimeters, T2 hyperintensity of the inferior glenohumeral ligament, and soft-tissue thickening within the rotator muscles or biceps anchor [13].

STATISTICAL ANALYSIS:

Descriptive statistics were utilized to calculate percentages for categorical variables and standard deviations for continuous variables.

Results

PARTICIPANTS:

A total of 730 patients presented with shoulder pain at the 35 included clinics during the study time window, and 26 patients reported that their symptoms began within 1 month following COVID-19 vaccine administration. A total of 26 shoulder MRIs and 6 shoulder radiographic series were analyzed. Sixteen patients met the inclusion criteria while 10 were excluded (Figure 1). No patients had a history of COVID-19 infection preceding their vaccination or developed COVID-19 during the study time window. Included patients were of Asian ethnicity. Three of 16 (19%) of the patients had significant medical comorbidities, including diabetes and/or cardiovascular disease, while no patients had thyroid disease, autoimmune disease, cancer, or Parkinson’s disease.

DESCRIPTIVE DATA:

Of the included patients, 12/16 (75%) were women and 4/16 (25%) were men. At the time of injury, the mean patient age was 49±10 years (Table 1). The mean onset of symptoms was 3.5±2.5 days after vaccination. All patients presented with reduced active shoulder range of motion (Table 2). The baseline mean shoulder pain severity was 8.1±0.8. The injection site and shoulder pain were on the left in 13/16 (81)% of patients and right in 3/16 (19)%. Regarding COVID-19 vaccine type, 12/16 (75%) of patients were administered Pfizer-BioNTech while 4/16 (25%) received Sinovac-CoronaVac.

A primary diagnosis of adhesive capsulitis was most common, occurring in 10/16 (63%) of patients (Figure 2). Subacromial-subdeltoid bursitis and rotator cuff tear (Figure 3) each occurred in 3/16 (19%) of patients. All patients with rotator cuff tear had a supraspinatus tear. No other relevant shoulder pathologies (eg, labrum tear) were identified.

OUTCOME DATA:

Most patients (13/16, 81%) received manual therapy or exercise therapy for treatment of shoulder pain as provided by a chiropractor or physiotherapist. A minority of patients (3/16, 19%) additionally received medications to treat their shoulder pain, these being nonsteroidal anti-inflammatory drugs (NSAIDs) and muscle relaxants. All patients completed between 10 and 20 treatments over the course of 3 months, based on a typical treatment plan for shoulder disorders utilized among the affiliated clinics. No patients underwent surgery or steroid injection.

After 3 months of conservative treatment, patients were re-assessed as part of routine clinical care. The average shoulder range of motion improved on flexion (83° to 146°), abduction (80° to 131°), and 90-degree external rotation (30° to 75°), such that each patient went from an abnormal range at baseline to within the normative range (Table 2) [15]. Mean pain severity reduced to 2.4±1.4, with 12/16 (75%) of patients attaining a mild pain severity (≤3 of 10) at 3-month follow-up.

Discussion

LIMITATIONS:

There are several limitations to this study. First, its retrospective nature may increase the chance of bias. For example, there could be recall bias in the sense that patients’ self-report of the onset of shoulder symptoms was inaccurate. Further, cases of SIRVA after COVID-19 administration could have been missed by the medical record query if shoulder injuries were not coded or documented accurately by clinicians. Second, there was selection bias because only patients with shoulder pathology confirmed by imaging were considered; therefore, the study is not representative of a broader population with pain but no radiological findings. Third, there was diagnosis bias as patients were assessed by different clinicians and imaging was interpreted by different radiologists. Fourth, a record of the exact site of vaccine administration in terms of distance from the acromion was not available in most cases, which prevented a definitive conclusion that improper vaccine administration was causative of each case of SIRVA. Fifth, although this series revealed that the rate of SIRVA was low among patients presenting with shoulder pain after COVID-19 vaccination (16 of 730; 2%), the overall prevalence of this condition among vaccinated individuals could not be determined from the current study design. Sixth, in each case, the type of provider administering the vaccine was not clear given this relied on patients’ self-report. However, in most cases this was likely a nurse, and in some cases, this may have been a physician. In Hong Kong, pharmacists do not typically administer vaccines. Finally, because the natural history of SIRVA related to COVID-19 vaccination is not well described, it is possible patients would have recovered without treatment in a similar time frame.

Conclusions

In the past 2 years, millions of intramuscular COVID-19 vaccinations have been administered. It is important that clinicians are aware of SIRVA as a cause of new symptoms of shoulder injury and should ask the patient about recent vaccinations, including for COVID-19.

References

1. Polack FP, Thomas SJ, Kitchin N, Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine: N Engl J Med, 2020; 383; 2603-15

2. Ritchie H, Mathieu E, Rodés-Guirao L, Coronavirus pandemic (COVID-19) [Internet]: Our World Data, 2020 [cited 2022 Apr 13]. Available from:https://ourworldindata.org/covid-vaccinations

3. Ramos CL, Kelso JM, “COVID Arm”: Very delayed large injection site reactions to mRNA COVID-19 vaccines: J Allergy Clin Immunol Pract” Elsevier, 2021; 9; 2480-81

4. Wiesel BB, Keeling LE, Shoulder injury related to vaccine administration: J Am Acad Orthop Surg, 2021; 29; 732-39

5. MacMahon A, Nayar SK, Srikumaran U, What do we know about shoulder injury related to vaccine administration? An updated systematic review: Clin Orthop Relat Res, 2022; 480(7); 1241-50

6. Cantarelli Rodrigues T, Hidalgo PF, Skaf AY, Serfaty A, Subacromial-subdeltoid bursitis following COVID-19 vaccination: A case of shoulder injury related to vaccine administration (SIRVA): Skeletal Radiol, 2021; 50; 2293-97

7. Boonsri P, Chuaychoosakoon C, Combined subacromial-subdeltoid bursitis and supraspinatus tear following a COVID-19 vaccination: A case report: Ann Med Surg, 2021; 69; 102819

8. Chuaychoosakoon C, Parinyakhup W, Tanutit P, Shoulder injury related to Sinovac COVID-19 vaccine: A case report: Ann Med Surg, 2021; 68; 102622

9. Honarmand AR, Mackey J, Hayeri R, Shoulder injury related to vaccine administration (SIRVA) following mRNA COVID-19 vaccination: Report of 2 cases of subacromial-subdeltoid bursitis: Radiol Case Rep, 2021; 16; 3631-34

10. Nakajima K, Miyata A, Kato S, Calcific tendinitis of the shoulder induced by an mRNA vaccine for COVID-19: A case report: Mod Rheumatol Case Rep, 2022 [Online ahead of print]

11. Wharton BR, Doan KC, Wolcott ML, Shoulder injury related to COVID-19 vaccine administration: A case report: JSES Rev Rep Tech, 2022; 2(2); 178-81

12. Yuen WLP, Loh SYJ, Wang DB, SIRVA (Shoulder Injury Related to Vaccine Administration) following mRNA COVID-19 vaccination: Case discussion and literature review: Vaccine, 2022; 40; 2546

13. Chow JCK, Koles SL, Bois AJ, Shoulder injury related to SARS-CoV-2 vaccine administration: CMAJ, 2022; 194; E46-49

14. Sahu D, Shetty G, Frozen shoulder after COVID-19 vaccination: JSES Int, 2022 [Online ahead of print]

15. Ellenbecker TS: Clinical examination of the shoulder, 2004, St Louis, Mo, Saunders

16. Green MS, Peer V, Magid A, Gender differences in adverse events following the Pfizer-BioNTech COVID-19 vaccine: Vaccines (Basel), 2022; 10; 233

17. Le HV, Lee SJ, Nazarian A, Rodriguez EK, Adhesive capsulitis of the shoulder: Review of pathophysiology and current clinical treatments: Shoulder Elbow, 2017; 9; 75-84

18. Bodor M, Montalvo E, Vaccination-related shoulder dysfunction: Vaccine, 2007; 25; 585-87

19. Chu ECP, Wong AYL, Sim P, Krüger F, Exploring scraping therapy: Contemporary views on an ancient healing – a review: J Fam Med Prim Care, 2021; 10; 2757

In Press

12 Aug 2022 : Clinical Research  

Risk Factors and Pathogen Spectrum in Continuous Ambulatory Peritoneal Dialysis-Associated Peritonitis: A S...

Med Sci Monit In Press; DOI: 10.12659/MSM.937112  

11 Aug 2022 : Meta-Analysis  

Optimal Surgical Treatment Method for Anterior Cruciate Ligament Rupture: Results from a Network Meta-Analysis

Med Sci Monit In Press; DOI: 10.12659/MSM.937118  

10 Aug 2022 : Review article  

Programmed Cell Death in Diabetic Nephropathy: A Review of Apoptosis, Autophagy, and Necroptosis

Med Sci Monit In Press; DOI: 10.12659/MSM.937766  

10 Aug 2022 : Database Analysis  

Use and Effects of Augmentation of Labor with Oxytocin: A Single-Center, Retrospective, Case-Control Study ...

Med Sci Monit In Press; DOI: 10.12659/MSM.937557  

Most Viewed Current Articles

30 Dec 2021 : Clinical Research  

Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...

DOI :10.12659/MSM.935379

Med Sci Monit 2021; 27:e935379

13 Nov 2021 : Clinical Research  

Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...

DOI :10.12659/MSM.932788

Med Sci Monit 2021; 27:e932788

08 Mar 2022 : Review article  

A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...

DOI :10.12659/MSM.936292

Med Sci Monit 2022; 28:e936292

01 Nov 2020 : Review article  

Long-Term Respiratory and Neurological Sequelae of COVID-19

DOI :10.12659/MSM.928996

Med Sci Monit 2020; 26:e928996

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750