01 February 2004
Nitric oxide modulates microglial activation
George B. Stefano, Ellen Kim, Yu Liu, Wei Zhu, Federico Casares, Kirk J. Mantione, Dolisha Jones, Patrick CadetMed Sci Monit 2004; 10(2): BR17-22 :: ID: 11594
Abstract
Background:Nitric oxide (NO) has important physiological regulatory roles, i.e, vasodilation, neurotransmitter release, etc. Little is known about the processes in neural tissues, which stabilize microglia. This study attempts to answer this question by demonstrating a role for basal NO in maintaining microglia juxtaposed to neurons.Material/Methods: Mytilus edulis (a marine bivalve), were used to examine microglia egress from excised pedal ganglia microscopically. Nitric oxide is measured in excised pedal ganglia amperometrically in real-time.Results: Pedal ganglia exhibit basal NO release (1 nM range). Inhibition of basal NO release by L-NAME results in greater numbers of microglia in the incubation medium. This process appears to involve two phases of egress. The first involves a slow egress of microglia, whereas the second, occurring 18 hours later, involves a more rapid release of these cells. Low levels of the NO donor SNAP (1 nM) does not interrupt microglial egress, whereas in the presence of L-NAME it does. Exposing the ganglia to high NO levels for a short period of time inhibits their egress.Conclusions: Spontaneous ganglionic NO release maintains/stabilizes microglia juxtaposed to neurons. Excised ganglia at the various observation periods reveals a transition of constitutive nitric oxide synthase (NOS) to inducible NOS derived NO. It also appears that the microglia in some unknown manner become insensitive to iNOS derived NO since they exhibit enhanced migration during this last phase of the ganglionic NO response. Taken together, NO is involved with regulating microglial activation.
Keywords: Microglia - metabolism, Bivalvia - cytology, Electrochemistry - methods, Enzyme Inhibitors - pharmacology, Ganglia, Invertebrate - metabolism, Microglia - physiology, NG-Nitroarginine Methyl Ester - pharmacology, Nitric Oxide - physiology, Nitric Oxide Donors - pharmacology, Penicillamine - pharmacology
Editorial
01 October 2024 : Editorial
Editorial: Potentials and Pitfalls in Targeting Glucagon-Like Peptide-1 (GLP-1) in the Management of Increasing Levels of ObesityDOI: 10.12659/MSM.946675
Med Sci Monit 2024; 30:e946675
In Press
Clinical Research
Minimally Invasive Combined Medial and Lateral Approach for Treating Displaced Scapular Body and Neck Fract...Med Sci Monit In Press; DOI: 10.12659/MSM.945535
Clinical Research
Evaluation of Neuromuscular Blockade: A Comparative Study of TOF-Cuff® on the Lower Leg and TOF-Scan® on th...Med Sci Monit In Press; DOI: 10.12659/MSM.945227
Clinical Research
Acupuncture Enhances Quality of Life and Disease Control in Chronic Spontaneous Urticaria Patients on Omali...Med Sci Monit In Press; DOI:
Review article
Sex and Population Variations in Nasopalatine Canal Dimensions: A CBCT-Based Systematic ReviewMed Sci Monit In Press; DOI:
Most Viewed Current Articles
17 Jan 2024 : Review article 6,057,160
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
14 Dec 2022 : Clinical Research 1,850,676
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
16 May 2023 : Clinical Research 693,861
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
07 Jan 2022 : Meta-Analysis 258,144
Efficacy and Safety of Light Therapy as a Home Treatment for Motor and Non-Motor Symptoms of Parkinson Dise...DOI :10.12659/MSM.935074
Med Sci Monit 2022; 28:e935074