01 October 2007
Can the “brain-sparing effect” be detected in a small-animal model?
Efrat Barbiro-Michaely, Michael Tolmasov, Shunit Rinkevich-Shop, Judith Sonn, Avraham MayevskyMed Sci Monit 2007; 13(10): BR211-219 :: ID: 502335
Abstract
Background: Under O[sub]2[/sub] imbalance in the body, blood redistribution occurs between more vital organs and less vital organs. This response is defined as the "brain-sparing effect". The study’s aim was to develop a new rat model for simultaneous real-time monitoring of tissue viability in a highly vital organ, the brain, and a less vital organ, the small intestine, under various metabolic perturbations and emergency-like situations.
Material/Methods: The cerebral cortex and intestinal serosa were exposed in anesthetized rats and a multi-site multi-parametric (MSMP) monitoring system was connected to both. Tissue blood flow (TBF) was monitored using laser Doppler flowmetry and mitochondrial function by NADH fluorometry. The perturbations performed were anoxia (30 sec) and 20 minutes of hypoxia, hypercapnia, or hyperoxia.
Results: Under oxygen deficiency, cerebral blood flow (CBF) increased (315±53% in anoxia and 140±12% in hypoxia), whereas intestinal blood flow decreased (60±11% in anoxia and 56±13% in hypoxia). Mitochondrial NADH significantly increased in both organs (119±2.8% and 151±14% in the brain and intestine, respectively). Under hyperoxia, NADH was oxidized in both organs (up to 9% change). Hypercapnia led to an increase in CBF (143±11%) and oxidation of mitochondrial NADH (by 10%), with no significant changes in the intestine.
Conclusions: The two organs respond significantly differently to lack of O[sub]2[/sub] by activating the sympathetic nervous system. Monitoring less vital organs may indicate an early response to emergency situations. Therefore, a less vital organ could be used as a surrogate organ to be monitored in order to spare the brain.
Keywords: Anoxia - physiopathology, Blood Pressure, Cerebral Cortex - blood supply, Cerebrovascular Circulation - physiology, Hypercapnia - physiopathology, Hyperoxia - physiopathology, Intestines - blood supply, Models, Animal, Monitoring, Physiologic, Regional Blood Flow
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Laboratory Research
Comparative Evaluation of the Dimensional Accuracy of Silicone-Based Putty Reline Impressions with Differen...Med Sci Monit In Press; DOI: 10.12659/MSM.946537
Clinical Research
Ankle-Brachial Index as a Predictor of Acute Ischemic Cerebrovascular Event After Central Retinal Artery Oc...Med Sci Monit In Press; DOI: 10.12659/MSM.945937
Review article
COL3A1 Gene Polymorphism and Its Impact on Female Pelvic Organ ProlapseMed Sci Monit In Press; DOI: 10.12659/MSM.946367
Clinical Research
Quantifying Gait Asymmetry in Stroke Patients: A Statistical Parametric Mapping (SPM) ApproachMed Sci Monit In Press; DOI: 10.12659/MSM.946754
Most Viewed Current Articles
17 Jan 2024 : Review article 6,962,292
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 699,764
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 22,978
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 17,753
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912