Abstract
Recent developments in Computer-Integrated and Robot-Aided Surgery (in particular, the emergence of automatic surgical tools and robots (as well as advances in Virtual Reality techniques, call for closer examination of the mechanical properties of very soft tissues (such as brain, liver, kidney, etc.). Moreover, internal organs are very susceptible to trauma. In order to protect them properly against car crash and other impact consequences we need to be able to predict the organ deformation. Such prediction can be achieved by proper mathematical modelling followed by a computer simulation. The ultimate goal of our research into the biomechanics of these tissues is development of corresponding, realistic mathematical models. This paper contains experimental results of in vitro, uniaxial, unconfined compression of swine brain tissue obtained by the author in Mechanical Engineering Laboratory, Japan, and discusses liver and kidney in vivo compression experiments conducted in Highway Safety Research Institute and the Medical Centre of The University of Michigan. The stress-strain curves for investigated tissues are concave upward for all compression rates containing no linear portion from which a meaningful elastic modulus might be determined. The tissue response stiffened as the loading speed increased, indicating a strong stress (strain rate dependence. As the step in the direction towards realistic computer simulation of injuries and surgical procedures, this paper presents two mathematical representations of brain, liver and kidney tissue stiffness. Biphasic and single-phase models are discussed. The biphasic model is shown to be inappropriate due to its inability to account for strong stress-strain relationship. Agreement between the proposed single-phase models and experiment is good for compression levels reaching 30% and for loading velocities varying over five orders of magnitude. Presented mathematical models can find applications in computer and robot assisted surgery, e. g. the realistic simulation of surgical procedures (including virtual reality), control systems of surgical robots, and non-rigid registration, as well as ergonomic design for injury prevention.
Keywords: mathematical modelling, mechanical properties, Kidney, Liver, Brain
687 81
Editorial
01 June 2023 : Editorial
Editorial: Infectious Disease Surveillance Using Artificial Intelligence (AI) and its Role in Epidemic and Pandemic PreparednessDOI: 10.12659/MSM.941209
Med Sci Monit 2023; 29:e941209
In Press
08 Jun 2023 : Clinical Research
Risk Factors for New Vertebral Compression Fracture After Percutaneous Vertebral Augmentation: A Retrospect...Med Sci Monit In Press; DOI: 10.12659/MSM.940134
08 Jun 2023 : Clinical Research
A Nomogram for Identifying HR+/Her2- Breast Cancer Patients with Positive Sentinel Lymph Nodes and Omitted ...Med Sci Monit In Press; DOI: 10.12659/MSM.940124
08 Jun 2023 : Clinical Research
Burden of COVID-19 on Mental Health of Resident Doctors in PolandMed Sci Monit In Press; DOI: 10.12659/MSM.940208
08 Jun 2023 : Clinical Research
Risk Prediction for Rapidly Progressive Interstitial Lung Disease in Anti-MDA5-Positive Dermatomyositis: Th...Med Sci Monit In Press; DOI: 10.12659/MSM.940251
Most Viewed Current Articles
13 Nov 2021 : Clinical Research
Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...DOI :10.12659/MSM.932788
Med Sci Monit 2021; 27:e932788
30 Dec 2021 : Clinical Research
Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...DOI :10.12659/MSM.935379
Med Sci Monit 2021; 27:e935379
08 Mar 2022 : Review article
A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...DOI :10.12659/MSM.936292
Med Sci Monit 2022; 28:e936292
01 Jan 2022 : Editorial
Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Pa...DOI :10.12659/MSM.935952
Med Sci Monit 2022; 28:e935952