29 May 2008
Protective effects of nebivolol on oxygen free radical-induced vasoconstrictions in vitro
Lars WagenfeldABCDEFG, Okko HimpelBCDF, Peter GalambosDF, Nataliya MatthiesenDF, Anne WiermannDF, Gisbert RichardAD, Maren KlemmAD, Oliver ZeitzACDEFGMed Sci Monit 2008; 14(6): BR109-112 :: ID: 859028
Abstract
Background
Disturbed ocular hemodynamics and vasospasms might be involved in the pathogenesis of glaucoma. On a clinical level there are indications for an optimization of ocular perfusion parameters in hypertensive glaucoma patients by switching a beta-adrenoceptor-antagonist therapy to nebivolol. Aim of the present study is to investigate vasoactive properties of nebivolol on ocular vasculature in vitro. Besides vasorelaxing effects, the impact of nebivolol on oxygen free radical-induced vasoconstrictions is studied.
Material and Method
The experiments were carried out with ring preparations from porcine ciliary arteries. The preparations were placed in a myograph system and were kept under physiological conditions (pH 7.4, 37 degrees C, Krebs-Henseleit-Buffer, 1.75 mM Ca2+) and were stimulated by K+ depolarizations. The experiments were performed at a Nernst potential of -41 mV, which reflects half-maximal activation. For radical exposure, the preparations were superfused for 20 s in a specifically designed set-up with hydroxyl radicals generated by the Fenton reaction from H2O2 and Fe3+. NO synthase activity was modulated by adding L-arginine to the buffer.
Results
At a concentration of 10-5 M nebivolol leads to a reduction of vascular tone by -8.5+/-3.4% (n=11; P=0.016) vs. +2.6+/-1.9% (n=11; n.s.) in presence of its solvent DMSO. Nebivolol (10-5 M) reduces hydroxyl radical-induced vasoconstrictions by 53+/-10% (n=11; P<0.001). Stimulation of the NO synthase by L-arginine saturation potentiates this effect.
Conclusions
Nebivolol combines vasorelaxing properties with protection against oxidative stress-induced vasoconstrictions. Both effects may be attributed to NO-releasing properties of nebivolol independently of its beta-adrenoceptor-blocking effect.
Keywords: Swine, Protective Agents - pharmacology, Free Radicals - toxicity, Oxygen - toxicity, Ethanolamines - pharmacology, Ciliary Arteries - drug effects, Vasoconstriction - drug effects, Benzopyrans - pharmacology
565 2
Editorial
01 June 2023 : Editorial
Editorial: Infectious Disease Surveillance Using Artificial Intelligence (AI) and its Role in Epidemic and Pandemic PreparednessDOI: 10.12659/MSM.941209
Med Sci Monit 2023; 29:e941209
In Press
05 Jun 2023 : Clinical Research
Comparison of Texture and Color Enhancement Imaging with White Light Imaging in 52 Patients with Short-Segm...Med Sci Monit In Press; DOI: 10.12659/MSM.940249
05 Jun 2023 : Laboratory Research
Comparison of Composite Resin (Duo-Shade) Shade Guide with Vita Ceramic Shades Before and After Chemical an...Med Sci Monit In Press; DOI: 10.12659/MSM.940949
02 Jun 2023 : Database Analysis
The COVID-19 Crisis and the Incidence of Alcohol-Related Deaths in PolandMed Sci Monit In Press; DOI: 10.12659/MSM.940904
01 Jun 2023 : Clinical Research
Root Canal Numbers and Configurations in 1080 Permanent Canine Teeth in 270 Saudi Subjects Using Cone-Beam ...Med Sci Monit In Press; DOI: 10.12659/MSM.940472
Most Viewed Current Articles
13 Nov 2021 : Clinical Research
Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...DOI :10.12659/MSM.932788
Med Sci Monit 2021; 27:e932788
30 Dec 2021 : Clinical Research
Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...DOI :10.12659/MSM.935379
Med Sci Monit 2021; 27:e935379
08 Mar 2022 : Review article
A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...DOI :10.12659/MSM.936292
Med Sci Monit 2022; 28:e936292
01 Jan 2022 : Editorial
Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Pa...DOI :10.12659/MSM.935952
Med Sci Monit 2022; 28:e935952