01 July 2008
Ghrelin attenuates lipopolysaccharide-induced acute lung injury through NO pathway
Jian Chen, Xiaojing Liu, Qiaoli Shu, Shuangqing Li, Fengming LuoMed Sci Monit 2008; 14(7): BR141-146 :: ID: 863660
Abstract
Background: In a rat model, ghrelin has been shown to exert an anti-inflammatory effect in cardiovascular disease and arthritis. It also inhibits expression of proinflammatory cytokines. The wide tissue distribution of ghrelin expression and the presence of growth hormone secretagogue receptor (GHS-R) in the lung suggest that ghrelin may be a potential signal modulator in the lung. However, whether ghrelin exerts anti-inflammatory effects on acute lung injury induced by lipopolysaccharide (LPS) remains unknown. Therefore, we sought to investigate the role of ghrelin in LPS-induced acute lung injury and its underlying mechanism.
Material/Methods: We induced acute lung injury in rats via intratracheal instillation of LPS. We injected ghrelin and Nomega-nitro-L-arginine methyl ester (L-NAME) through the tail vein. Lung injury was assessed by histologic examination 6 hours after injury. Lung macrophages were isolated and incubated with LPS, L-NAME, and ghrelin. Concentrations of TNF-alpha and IL-1beta in bronchoalveolar lavage (BAL) fluid and culture supernatant were determined by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) in BAL fluid and culture supernatant and NO synthase (NOS) in cultured macrophage were detected by a spectrophotometry.
Results: Ghrelin attenuated pulmonary inflammation in LPS-induced acute lung injury, decreased production of proinflammatory cytokines, and increased NO concentrations in BAL fluid. Ghrelin also suppressed LPS-induced expression of proinflammatory cytokines, and increased NOS activity in cultured macrophages and NO concentrations in culture supernatants. The anti-inflammatory effect of ghrelin was inhibited by L-NAME.
Conclusions: Ghrelin attenuates LPS-induced acute lung inflammation and suppresses LPS-induced proinflammatory cytokine production in lung macrophages, which is partially mediated by increased NO production.
Keywords: acute lung injury, Nitric Oxide, Bronchoalveolar Lavage Fluid, Culture Media, Cytokines - biosynthesis, Ghrelin - pharmacology, Inflammation Mediators - metabolism, Lipopolysaccharides - pharmacology, Macrophages, Alveolar - enzymology, Nitric Oxide - metabolism, Nitric Oxide Synthase - metabolism, Respiratory Distress Syndrome, Adult - prevention & control
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Animal Research
Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence EffectMed Sci Monit In Press; DOI: 10.12659/MSM.945605
Laboratory Research
Comparative Evaluation of the Dimensional Accuracy of Silicone-Based Putty Reline Impressions with Differen...Med Sci Monit In Press; DOI: 10.12659/MSM.946537
Clinical Research
Ankle-Brachial Index as a Predictor of Acute Ischemic Cerebrovascular Event After Central Retinal Artery Oc...Med Sci Monit In Press; DOI: 10.12659/MSM.945937
Review article
COL3A1 Gene Polymorphism and Its Impact on Female Pelvic Organ ProlapseMed Sci Monit In Press; DOI: 10.12659/MSM.946367
Most Viewed Current Articles
17 Jan 2024 : Review article 6,962,174
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 699,683
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 22,873
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 17,628
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912