01 August 2009
Combining "open-lung" ventilation and arteriovenous extracorporeal lung assist: influence of different tidal volumes on gas exchange in experimental lung failure
Ralf M MuellenbachABCDE, Markus KredelBC, Julian KuestermannBC, Michael KlingelhoeferBC, Frank SchusterBF, Christian WunderBF, Peter KrankeDF, Norbert RoewerADG, Joerg BrederlauACDMed Sci Monit 2009; 15(8): BR213-220 :: ID: 878131
Abstract
Background
Although low-tidal ventilation may reduce mortality in acute respiratory distress syndrome (ARDS), it can also result in severe respiratory acidosis and lung derecruitment. This study tested the hypothesis that combining "open-lung" ventilation and arteriovenous extracorporeal lung assist (av-ECLA) allows for maximal tidal volume (VT) reduction without the development of decompensated respiratory acidosis and impairment of oxygenation.
Material and Method
After induction of ARDS in eight female pigs (56.1+/-3.2 kg), lung recruitment was performed and positive end-expiratory pressure was set 3 cmH2O above the lower inflection point of the pressure-volume curve. All animals were ventilated in the pressure-controlled ventilation mode (PCV) with VTs ranging from 0-8 ml/kg. At each VT, gas exchange and hemodynamic measurements were obtained with the av-ECLA circuit clamped and declamped. With each declamping, the gas flow through the membrane lung was set to 10 l of oxygen/min. The respiratory rate was adjusted to maintain normocapnia, but limited to 40/min.
Results
After lung recruitment, oxygenation remained significantly improved although VTs were minimized to 0 ml/kg (p<0.05). PaO2 was significantly improved during PCV and av-ECLA compared with PCV alone at VTs <4 ml/kg (p<0.05). With VT <6 ml/kg, severe acidosis could only be avoided if PCV was combined with av-ECLA.
Conclusions
Due to sufficient CO2 elimination during av-ECLA, the VTs could be reduced to 0-2 ml/kg without the risk of decompensated respiratory acidosis. It was also shown that the "open-lung" strategy chosen was associated with sustained improvements in oxygenation, even though VTs were minimized.
Keywords: Swine, Tidal Volume - physiology, Respiration, Artificial - methods, Pulmonary Ventilation - physiology, Pulmonary Gas Exchange - physiology, Partial Pressure, Oxygen - metabolism, Lung Diseases - physiopathology, Hemodynamics, Carbon Dioxide - metabolism, Time Factors
Editorial
01 February 2025 : Editorial
Editorial: Current Approaches to Screening for Lung Cancer in Smokers and Non-SmokersDOI: 10.12659/MSM.948255
Med Sci Monit 2025; 31:e948255
In Press
Clinical Research
Correlation Descriptive Study on Nurses' Professional Values and Job Satisfaction and the Ethical Climate o...Med Sci Monit In Press; DOI: 10.12659/MSM.945639
Clinical Research
Pre- and Post-Surgical MRI Analysis of Levator Ani in Pelvic Organ Prolapse Patients: A Single-Center StudyMed Sci Monit In Press; DOI: 10.12659/MSM.945993
Clinical Research
Comparative Impact of Kinesio Taping and Post-Isometric Muscle Relaxation on Pain and Myofascial Mechanics ...Med Sci Monit In Press; DOI: 10.12659/MSM.945376
Clinical Research
Surgical Efficacy in Varicocele Ligation with Ephedrine-Assisted Blood Pressure ControlMed Sci Monit In Press; DOI: 10.12659/MSM.946234
Most Viewed Current Articles
17 Jan 2024 : Review article 6,968,210
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 701,772
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 25,357
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 19,972
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912