04 February 2016 : Laboratory Research
Haloperidol Suppresses NF-kappaB to Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Response in RAW 264 Cells
Shunsuke YamamotoABCDEF, Noriyuki OhtaABCDEFG, Atsuhiro MatsumotoBDF, Yu HoriguchiBF, Moe KoideBF, Yuji FujinoACDEGDOI: 10.12659/MSM.895739
Med Sci Monit 2016; 22:367-372
Abstract
BACKGROUND: Haloperidol, a tranquilizing agent, is administered both to treat symptoms of psychotic disorders and to sedate agitated and delirious patients. Notably, haloperidol has been suggested to inhibit the immune response through unknown mechanisms. We hypothesized that the sedative modulates the immune response via NF-κB.
MATERIAL AND METHODS: Using flow cytometry, we analyzed the effects of haloperidol on expression CD80 and CD86 in RAW 264 cells and in primary macrophages derived from bone marrow. Secretion of interleukin (IL)-1β, IL-6, and IL-12 p40 was measured by enzyme-linked immunosorbent assay. In addition, NF-κB activation was evaluated using a reporter assay based on secretory embryonic alkaline phosphatase. Finally, synthetic antagonists were used to identify the dopamine receptor that mediates the effects of haloperidol.
RESULTS: Haloperidol inhibited NF-κB activation, and thereby suppressed expression of CD80, as well as secretion of IL-1β, IL-6, and IL-12 p40. CD80 and IL-6 levels were similarly attenuated by a D2-like receptor antagonist, but not by a D1-like receptor antagonist.
CONCLUSIONS: The data strongly suggest that haloperidol inhibits the immune response by suppressing NF-kB signaling via the dopamine D2 receptor.
Keywords: Antigens, CD86 - metabolism, Antigens, CD80 - metabolism, Cytokines - metabolism, Haloperidol - pharmacology, Inflammation - metabolism, Interleukins - metabolism, Lipopolysaccharides - pharmacology, Macrophages - metabolism, RAW 264.7 Cells, Receptors, Dopamine D2 - metabolism, Schizophrenia - metabolism, Signal Transduction - drug effects
Editorial
01 September 2024 : Editorial
Editorial: Reasons for Increasing Global Concerns for the Spread of MpoxDOI: 10.12659/MSM.946343
Med Sci Monit 2024; 30:e946343
In Press
Review article
Long COVID or Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) and the Urgent Need to Identify Diagnostic...Med Sci Monit In Press; DOI: 10.12659/MSM.946512
Clinical Research
Intravenous Lidocaine Response as a Predictor for Oral Oxcarbazepine Efficacy in Neuropathic Pain Syndrome:...Med Sci Monit In Press; DOI: 10.12659/MSM.945612
Review article
Cariprazine in Psychiatry: A Comprehensive Review of Efficacy, Safety, and Therapeutic PotentialMed Sci Monit In Press; DOI: 10.12659/MSM.945411
Clinical Research
Comparison of Remimazolam and Dexmedetomidine for Sedation in Awake Endotracheal Intubation in Scoliosis Su...Med Sci Monit In Press; DOI: 10.12659/MSM.944632
Most Viewed Current Articles
17 Jan 2024 : Review article 6,053,124
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
14 Dec 2022 : Clinical Research 1,840,708
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
16 May 2023 : Clinical Research 693,001
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
07 Jan 2022 : Meta-Analysis 257,439
Efficacy and Safety of Light Therapy as a Home Treatment for Motor and Non-Motor Symptoms of Parkinson Dise...DOI :10.12659/MSM.935074
Med Sci Monit 2022; 28:e935074