16 June 2016 : Animal Research
Value of Three-Dimensional Maximum Intensity Projection Display to Assist in Magnetic Resonance Imaging (MRI)-Based Grading in a Mouse Model of Subarachnoid Hemorrhage
Tomoko MutohCDEF, Tatsushi MutohABCDEFG, Kazumasu SasakiADE, Kazuhiro NakamuraBD, Yasuyuki TakiE, Tatsuya IshikawaADEGDOI: 10.12659/MSM.896499
Med Sci Monit 2016; 22:2050-2055
Abstract
BACKGROUND: Subarachnoid hemorrhage (SAH) is one of the most devastating cerebrovascular disorders. We report on the diagnostic value of three-dimensional (3-D) maximum intensity projection (MIP) reconstruction of T2*-weighted magnetic resonance images (MRI), processed using graphical user interface-based software, to aid in the accurate grading of endovascular-perforation-induced SAH in a mouse model.
MATERIAL AND METHODS: A total of 30 mice were subjected to SAH by endovascular perforation; three (10%) were scored as grade 0, six (20%) as grade 1, six (20%) as grade 2, eight (27%) as grade 3, and seven (23%) as grade 4 according to T2*-weighted coronal slices. In comparison, none of mice were scored as grade 0, eight (27%) as grade 1, five (17%) as grade 2, nine (30%) as grade 3, and eight (27%) as grade 4 based on subsequent evaluation using reconstructed 3-D MIP images.
RESULTS: Mice scored as grade 0 (10%; no visible SAH) on T2*-coronal images were categorized as grades 1 (thin/localized SAH) and 3 (thick/diffuse SAH) according to 3-D MIP images. Grades based on T2* 3-D MIP images were more closely correlated with conventional SAH score (r2=0.59; P<0.0001) and neurological score (r2=0.25; P=0.005) than those based on T2*-coronal slices (r2=0.46; P<0.0001 for conventional score and r2=0.15; P=0.035 for neurological score).
CONCLUSIONS: These results suggest that 3-D MIP images generated from T2*-weighted MRI data may be useful for the simple and precise grading of SAH severity in mice to overcome the weakness of the current MRI-based SAH grading system.
Keywords: Imaging, Three-Dimensional - methods, Subarachnoid Hemorrhage - pathology
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Clinical Research
Quantifying Gait Asymmetry in Stroke Patients: A Statistical Parametric Mapping (SPM) ApproachMed Sci Monit In Press; DOI: 10.12659/MSM.946754
Laboratory Research
Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond StrengthMed Sci Monit In Press; DOI: 10.12659/MSM.946772
Clinical Research
Impact of Smovey Vibration Versus Dumbbell Resistance on Muscle Activation in WomenMed Sci Monit In Press; DOI: 10.12659/MSM.946567
Clinical Research
Five-Year Impact of Weight Loss on Knee Pain and Quality of Life in Obese PatientsMed Sci Monit In Press; DOI: 10.12659/MSM.946550
Most Viewed Current Articles
17 Jan 2024 : Review article 6,962,831
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 699,975
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 23,256
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 17,976
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912