Logo Medical Science Monitor

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo Medical Science Monitor Logo Medical Science Monitor Logo Medical Science Monitor

30 August 2016 : Animal Research  

Association of Bactericidal Dysfunction of Paneth Cells in Streptozocin-Induced Diabetic Mice with Insulin Deficiency

Tao YuBCE, Hong-Sheng YangABCE, Xi-Ji LuC, Zhong-Sheng XiaF, Hui OuyangB, Ti-Dong ShanB, Can-Ze HuangC, Qi-Kui ChenAG

DOI: 10.12659/MSM.897270

Med Sci Monit 2016; 22:3062-3072

Abstract

BACKGROUND: Type 1 diabetes mellitus (T1DM) is associated with increased risks of enteric infection. Paneth cells constitute the first line of the gut defense. Little is known about the impact of T1DM on the bactericidal function of intestinal Paneth cells.

MATERIAL AND METHODS: A T1DM mouse model was induced by intraperitoneal injection of streptozocin. The analysis of intestinal microbiota and the mucosal bactericidal assay were conducted to evaluate intestinal innate defense. Numbers of Paneth cells and their expression of related antimicrobial peptides were analyzed. Expression of total insulin receptor (IR) mRNA and relative levels of IR-A/IR-B were analyzed. The primary mouse small intestinal crypt culture was used to analyze the effect of insulin and glucose on the expression of related antimicrobial peptides of Paneth cells.

RESULTS: In T1DM mice, bacterial loads were increased and there was an alteration in the composition of the intestinal microflora. Exogenous bacteria had better survival in the small bowel of the T1DM mice. The expression of Paneth cell-derived antimicrobial peptides was significantly decreased in the T1DM mice, although the number of Paneth cells was increased. Relative levels of IR-A/IR-B in Paneth cells of diabetic mice were elevated, but the total IR mRNA did not change. Insulin treatment restored the expression of antimicrobial peptides and normalized the microbiota in the gut of T1DM mice. Subsequently, in vitro culture assay demonstrated that insulin rather than glucose was essential for the optimal expression of Paneth cell-derived antimicrobial peptides.

CONCLUSIONS: The bactericidal function of intestinal Paneth cells was impaired in STZ-induced diabetic mice, resulting in the altered intestinal flora, and insulin was essential for the optimal expression of Paneth cell-derived antimicrobial peptides.

Keywords: Antimicrobial Cationic Peptides - immunology, Diabetes Mellitus, Experimental - microbiology, Diabetes Mellitus, Type 1 - microbiology, Immunity, Innate, Insulin - deficiency, Intestinal Mucosa - microbiology, Intestine, Small - microbiology, Paneth Cells - microbiology, Random Allocation, Receptor, Insulin - metabolism

Add Comment 0 Comments

Editorial

01 March 2025 : Editorial  

Editorial: The World Health Organization (WHO) Updated List of Emerging and Potentially Pandemic Pathogens Includes Yersinia pestis as Plague Vaccines Await Clinical Trials

Dinah V. Parums

DOI: 10.12659/MSM.948672

Med Sci Monit 2025; 31:e948672

0:00

In Press

Clinical Research  

Impact of Cholecalciferol Supplementation on Radiotherapy Outcomes in Advanced Cervical Cancer

Med Sci Monit In Press; DOI: 10.12659/MSM.945964  

Clinical Research  

Inflammatory Biomarkers in Smokers: Implications for Ligamentum Flavum Hypertrophy

Med Sci Monit In Press; DOI: 10.12659/MSM.947508  

Clinical Research  

Balancing Image Quality and Iodine Intake: Insights from CT Spectral Imaging of the Portal Vein

Med Sci Monit In Press; DOI: 10.12659/MSM.947391  

Review article  

Regulatory Efforts and Health Implications of Energy Drink Consumption by Minors in Poland

Med Sci Monit In Press; DOI: 10.12659/MSM.947124  

Most Viewed Current Articles

17 Jan 2024 : Review article   7,160,485

Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron Variant

DOI :10.12659/MSM.942799

Med Sci Monit 2024; 30:e942799

0:00

16 May 2023 : Clinical Research   702,385

Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...

DOI :10.12659/MSM.940387

Med Sci Monit 2023; 29:e940387

0:00

01 Mar 2024 : Editorial   27,806

Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...

DOI :10.12659/MSM.944204

Med Sci Monit 2024; 30:e944204

0:00

28 Jan 2024 : Review article   22,071

A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and Future

DOI :10.12659/MSM.943912

Med Sci Monit 2024; 30:e943912

0:00

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750