25 February 2016 : Laboratory Research
TRPC6 May Protect Renal Ischemia-Reperfusion Injury Through Inhibiting Necroptosis of Renal Tubular Epithelial Cells
BingBing ShenABCDEF, Yue HeABCDEF, Shan ZhouABCDEF, Hongwen ZhaoABCDEF, Mei MeiABCDEF, Xiongfei WuABCDEFGDOI: 10.12659/MSM.897353
Med Sci Monit 2016; 22:633-641
Abstract
BACKGROUND: The aim of this study was to explore the potential role of TRPC6 in the pathophysiology of HK-2 cell injury following ischemia reperfusion (I/R).
MATERIAL AND METHODS: TRPC6 expression was analyzed by immunofluorescence staining. siRNA was transfected to knockout of TRPC6 in HK-2 cells, and in vitro I/R was then induced. Cell apoptosis and necrosis were determined by Annexin V-FITC/PI staining. Necroptosis was determined by necrostatin-1 and expressions of necroptosis-related proteins were evaluated. OAG, SKF96365, or KN-93 was further used to interfere with TRPC6 expression.
RESULTS: Cytoplasmic TRPC6 expression was demonstrated. I/R induced TRPC6 expression in normal or NC siRNA-transfected cells but not in TRPC6 siRNA-knockout ones. There was a progressive increase in apoptotic and necrotic cells with increasing reoxygenation time in all 3 groups, while necrosis in TRPC6 siRNA-transfected cells was comparatively higher than that of the other 2 groups (p<0.05). Expressions of necroptosis-related proteins were interfered with following I/R and these effects were enhanced by TRPC6 siRNA. Application of OAG, SKF96365, or KN93 further affected necroptosis following I/R.
CONCLUSIONS: This study described the expression and functional relevance of TRPC6 in the pathophysiology of HK-2 cell following I/R. Our results regarding the ability of TRPC6 to specifically interrupt necroptosis may shed new light on its role in prevention and control of ischemic kidney injury.
Keywords: Benzylamines - pharmacology, Blotting, Western, Cell Line, Cell Shape - drug effects, Down-Regulation - drug effects, Epithelial Cells - pathology, Fluorescent Antibody Technique, Imidazoles - pharmacology, Ischemia - pathology, Kidney Tubules - pathology, Necrosis, Oxygen, Protective Agents - metabolism, RNA, Small Interfering - metabolism, Reperfusion Injury - prevention & control, Sulfonamides - pharmacology, TRPC Cation Channels - metabolism, Up-Regulation - drug effects
772 6
Editorial
01 June 2023 : Editorial
Editorial: Infectious Disease Surveillance Using Artificial Intelligence (AI) and its Role in Epidemic and Pandemic PreparednessDOI: 10.12659/MSM.941209
Med Sci Monit 2023; 29:e941209
In Press
01 Jun 2023 : Clinical Research
Root Canal Numbers and Configurations in 1080 Permanent Canine Teeth in 270 Saudi Subjects Using Cone-Beam ...Med Sci Monit In Press; DOI: 10.12659/MSM.940472
01 Jun 2023 : Clinical Research
Internal Orifice Alloy Closure: A New Procedure for Treatment of Perianal Fistulizing Crohn’s DiseaseMed Sci Monit In Press; DOI: 10.12659/MSM.940873
01 Jun 2023 : Clinical Research
Effectiveness of Needle Aspiration versus Surgical Excision for Symptomatic Synovial Cysts of the Hip: A Si...Med Sci Monit In Press; DOI: 10.12659/MSM.940187
01 Jun 2023 : Clinical Research
Influence of Insulin Resistance on Diabetes NephropathyMed Sci Monit In Press; DOI: 10.12659/MSM.939482
Most Viewed Current Articles
13 Nov 2021 : Clinical Research
Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...DOI :10.12659/MSM.932788
Med Sci Monit 2021; 27:e932788
30 Dec 2021 : Clinical Research
Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...DOI :10.12659/MSM.935379
Med Sci Monit 2021; 27:e935379
08 Mar 2022 : Review article
A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...DOI :10.12659/MSM.936292
Med Sci Monit 2022; 28:e936292
01 Jan 2022 : Editorial
Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Pa...DOI :10.12659/MSM.935952
Med Sci Monit 2022; 28:e935952