Logo Medical Science Monitor

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo Medical Science Monitor Logo Medical Science Monitor Logo Medical Science Monitor

07 April 2016 : Animal Research  

MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling

Qiang Kai HuangBEF, Hu-Yuan QiaoBD, Ming-Huan FuC, Gang LiBD, Wen-Bin LiACD, Zhi ChenAC, Jian WeiBD, Bing-Sheng LiangAEF

DOI: 10.12659/MSM.897909

Med Sci Monit 2016; 22:1161-1170

Abstract

BACKGROUND: Denervation-induced skeletal muscle atrophy results in significant biochemical and physiological changes potentially leading to devastating outcomes including increased mortality. Effective treatments for skeletal muscle diseases are currently not available. Muscle-specific miRNAs, such as miR-206, play an important role in the regulation of muscle regeneration. The aim of the present study was to examine the beneficial effects of miR-206 treatment during the early changes in skeletal muscle atrophy, and to study the underlying signaling pathways in a rat skeletal muscle atrophy model.

MATERIAL AND METHODS: The rat denervation-induced skeletal muscle atrophy model was established. miRNA-206 was overexpressed with or without TGF-β1 inhibitor in the rats. The mRNA and protein expression of HDAC4, TGF-β1, and Smad3 was determined by real-time PCR and western blot. The gastrocnemius muscle cross-sectional area and relative muscle mass were measured. MyoD1, TGF-β1, and Pax7 were determined by immunohistochemical staining.

RESULTS: After sciatic nerve surgical transection, basic muscle characteristics, such as relative muscle weight, deteriorated continuously during a 2-week period. Injection of miR-206 (30 μg/rat) attenuated morphological and physiological deterioration of muscle characteristics, prevented fibrosis effectively, and inhibited the expression of TGF-β1 and HDAC4 as assessed 2 weeks after denervation. Moreover, miR-206 treatment increased the number of differentiating (MyoD1+/Pax7+) satellite cells, thereby protecting denervated muscles from atrophy. Interestingly, the ability of miR-206 to govern HDAC4 expression and to attenuate muscle atrophy was weakened after pharmacological blockage of the TGF-b1/Smad3 axis.

CONCLUSIONS: TGF-β1/Smad3 signaling pathway is one of the crucial signaling pathways by which miR-206 counteracts skeletal muscle atrophy by affecting proliferation and differentiation of satellite cells. miR-206 may be a potential target for development of a new strategy for treatment of patients with early denervation-induced skeletal muscle atrophy.

Keywords: Denervation, Cell Differentiation - genetics, Histone Deacetylases - metabolism, Muscle, Skeletal - pathology, Muscular Atrophy - therapy, Myoblasts - metabolism, RNA, Messenger - metabolism, Random Allocation, Real-Time Polymerase Chain Reaction, Satellite Cells, Skeletal Muscle - metabolism, Sciatic Nerve - surgery, Smad3 Protein - metabolism

0 Comments

Editorial

01 January 2023 : Editorial  

Editorial: Current Status of Two Adjuvanted Malaria Vaccines and the World Health Organization (WHO) Strategy to Eradicate Malaria by 2030

Dinah V. Parums
Science Editor, Medical Science Monitor, International Scientific Information, Inc., Melville, NY, USA

DOI: 10.12659/MSM.939357

Med Sci Monit 2023; 29:e939357

SARS-CoV-2/COVID-19

26 January 2023 : Editorial  

Editorial: The XBB.1.5 (‘Kraken’) Subvariant of Omicron SARS-CoV-2 and its Rapid Global Spread

Med Sci Monit In Press; DOI: 10.12659/MSM.939580  

19 January 2023 : Clinical Research  

Evaluation of Health-Related Quality of Life and Mental Health in 729 Medical Students in Indonesia During ...

Med Sci Monit In Press; DOI: 10.12659/MSM.938892  

27 December 2022 : Clinical Research  

Effect of Physiotherapy to Correct Rounded Shoulder Posture in 30 Patients During the COVID-19 Pandemic in ...

Med Sci Monit 2022; 28:e938926

In Press

26 Jan 2023 : Editorial  

Editorial: The XBB.1.5 (‘Kraken’) Subvariant of Omicron SARS-CoV-2 and its Rapid Global Spread

Med Sci Monit In Press; DOI: 10.12659/MSM.939580  

20 Jan 2023 : Clinical Research  

A Study of 42 Partially Edentulous Patients with Single-Crown Restorations and Implants to Compare Bone Los...

Med Sci Monit In Press; DOI: 10.12659/MSM.939225  

20 Jan 2023 : Clinical Research  

Perfusate Neutrophil Gelatinase-Associated Lipocalin, Kidney Injury Molecular-1, Liver-Type Fatty Acid Bind...

Med Sci Monit In Press; DOI: 10.12659/MSM.938758  

19 Jan 2023 : Clinical Research  

Bakri Balloon for Treatment of Postpartum Hemorrhage: A Real-World 2016-2020 Study in 279 Women from a Sing...

Med Sci Monit In Press; DOI: 10.12659/MSM.938823  

Most Viewed Current Articles

13 Nov 2021 : Clinical Research  

Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...

DOI :10.12659/MSM.932788

Med Sci Monit 2021; 27:e932788

30 Dec 2021 : Clinical Research  

Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...

DOI :10.12659/MSM.935379

Med Sci Monit 2021; 27:e935379

08 Mar 2022 : Review article  

A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...

DOI :10.12659/MSM.936292

Med Sci Monit 2022; 28:e936292

01 Jan 2022 : Editorial  

Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Pa...

DOI :10.12659/MSM.935952

Med Sci Monit 2022; 28:e935952

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750