18 September 2016 : Laboratory Research
Upregulated miR-17 Regulates Hypoxia-Mediated Human Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis by Targeting Mitofusin 2
Zheng LuABCD, Sujun LiAD, Shunxin ZhaoCEF, Xianen FaAGDOI: 10.12659/MSM.900487
Med Sci Monit 2016; 22:3301-3308
Abstract
BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary artery vascular growth and remodeling. Aberrant expression of miR-17 has been shown to be involved in the pathogenesis of PAH, but its underlying molecular mechanism has not been elucidated.
MATERIAL AND METHODS: Mitofusin 2 (MFN2) expression was determined by qRT-PCR. The protein expression levels of MFN2, proliferating cell nuclear antigen (PCNA), and pro-apoptotic protein cleaved Caspase-3 were measured using Western blot analysis. Cell proliferation and apoptosis were assessed by CellTiter-Glo reagent and flow cytometry, respectively. Caspase-3/7 activity was measured using an Apo-ONE Homogeneous Caspase-3/7 assay kit. The regulation of miR-17 on MFN2 expression was assessed using luciferase reporter assay system.
RESULTS: miR-17 expression was upregulated in human pulmonary artery smooth muscle cells (hPASMCs) treated with hypoxia and lung tissues of PAH patients. Inhibition of miR-17 suppressed hypoxia-induced proliferation and promoted apoptosis in hPASMCs. miR-17 inhibited MFN2 expression by binding to its 3’-UTR. Decreased cell viability and increased apoptosis and Caspase-3 activity were observed in the anti-miR-17 + siNC group compared with the anti-miR-NC + siNC group. The expression of cleaved Caspase-3 was upregulated and the expression of PCNA was downregulated in the anti-miR-17 + siNC group. Moreover, these alterations were attenuated by knockdown of MFN2.
CONCLUSIONS: miR-17 regulates proliferation and apoptosis in hPASMCs through MFN2 modulation. We found that miR-17 acts as a potential regulator of proliferation and apoptosis of hPASMCs, and that it might be developed as a promising new strategy for the treatment of PAH.
Keywords: Mitochondrial Dynamics, Pulmonary Artery
Editorial
01 February 2025 : Editorial
Editorial: Current Approaches to Screening for Lung Cancer in Smokers and Non-SmokersDOI: 10.12659/MSM.948255
Med Sci Monit 2025; 31:e948255
In Press
Clinical Research
Surgical Efficacy in Varicocele Ligation with Ephedrine-Assisted Blood Pressure ControlMed Sci Monit In Press; DOI: 10.12659/MSM.946234
Clinical Research
Retrospective Study to Compare Injury Patterns and Associations in 170 Patients Following Electric Scooter ...Med Sci Monit In Press; DOI: 10.12659/MSM.947155
Review article
Hydrogels in Oral Disease Management: A Review of Innovations in Drug Delivery and Tissue RegenerationMed Sci Monit In Press; DOI: 10.12659/MSM.946122
Clinical Research
Procedure Dynamics in Transfemoral vs Transradial Cerebral Angiography: A Retrospective StudyMed Sci Monit In Press; DOI: 10.12659/MSM.947603
Most Viewed Current Articles
17 Jan 2024 : Review article 6,968,724
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 701,829
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 25,567
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 20,099
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912