07 April 2017 : Clinical Research
Customized Knee Prosthesis in Treatment of Giant Cell Tumors of the Proximal Tibia: Application of 3-Dimensional Printing Technology in Surgical Design
Wenbin Luo1ABCDEF, Lanfeng Huang1B, He Liu1ACDEF, Wenrui Qu1CDEF, Xin Zhao1AB, Chenyu Wang1ABCD, Chen Li1ABCD, Tao Yu1AB, Qing Han1AB, Jincheng Wang1ABCDEF*, Yanguo Qin1ABCDEFDOI: 10.12659/MSM.901436
Med Sci Monit 2017; 23:1691-1700
Abstract
BACKGROUND: We explored the application of 3-dimensional (3D) printing technology in treating giant cell tumors (GCT) of the proximal tibia. A tibia block was designed and produced through 3D printing technology. We expected that this 3D-printed block would fill the bone defect after en-bloc resection. Importantly, the block, combined with a standard knee joint prosthesis, provided attachments for collateral ligaments of the knee, which can maintain knee stability.
MATERIAL AND METHODS: A computed tomography (CT) scan was taken of both knee joints in 4 patients with GCT of the proximal tibia. We developed a novel technique – the real-size 3D-printed proximal tibia model – to design preoperative treatment plans. Hence, with the application of 3D printing technology, a customized proximal tibia block could be designed for each patient individually, which fixed the bone defect, combined with standard knee prosthesis.
RESULTS: In all 4 cases, the 3D-printed block fitted the bone defect precisely. The motion range of the affected knee was 90 degrees on average, and the soft tissue balance and stability of the knee were good. After an average 7-month follow-up, the MSTS score was 19 on average. No sign of prosthesis fracture, loosening, or other relevant complications were detected.
CONCLUSIONS: This technique can be used to treat GCT of the proximal tibia when it is hard to achieve soft tissue balance after tumor resection. 3D printing technology simplified the design and manufacturing progress of custom-made orthopedic medical instruments. This new surgical technique could be much more widely applied because of 3D printing technology.
Keywords: Arthroplasty, Replacement, Knee, Giant Cell Tumor of Bone, Imaging, Three-Dimensional
1401 35
Editorial
01 November 2023 : Editorial
Editorial: Factors Driving New Variants of SARS-CoV-2, Immune Escape, and Resistance to Antiviral Treatments as the End of the COVID-19 Pandemic is DeclaredDOI: 10.12659/MSM.942960
Med Sci Monit 2023; 29:e942960
In Press
29 Nov 2023 : Laboratory Research
CTRP13 Mitigates Endothelial Cell Ferroptosis via the AMPK/KLF4 Pathway: Implications for Atherosclerosis P...Med Sci Monit In Press; DOI: 10.12659/MSM.942733
28 Nov 2023 : Clinical Research
Impact of Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography on Therapeutic Decisions and ...Med Sci Monit In Press; DOI: 10.12659/MSM.942122
28 Nov 2023 : Clinical Research
Long-Term Outcomes of Decompression and Grafting in Acute Pathological Proximal Femur Fractures in Children...Med Sci Monit In Press; DOI: 10.12659/MSM.943031
27 Nov 2023 : Clinical Research
Comparison of Outcomes from Emergency Admissions to a Major Trauma Center in Turkey of 1646 Elderly Patient...Med Sci Monit In Press; DOI: 10.12659/MSM.942916
Most Viewed Current Articles
13 Nov 2021 : Clinical Research
Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...DOI :10.12659/MSM.932788
Med Sci Monit 2021; 27:e932788
30 Dec 2021 : Clinical Research
Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...DOI :10.12659/MSM.935379
Med Sci Monit 2021; 27:e935379
14 Dec 2022 : Clinical Research
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
08 Mar 2022 : Review article
A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...DOI :10.12659/MSM.936292
Med Sci Monit 2022; 28:e936292