Logo Medical Science Monitor

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo Medical Science Monitor Logo Medical Science Monitor Logo Medical Science Monitor

23 March 2018 : Laboratory Research  

MicroRNA-194 Regulates the Development and Differentiation of Sensory Patches and Statoacoustic Ganglion of Inner Ear by Fgf4

Hui Cao12ABCDEFG, Jianbo Shi1BCF, Jintao Du3BCF, Kaitian Chen1BCF, Chang Dong4BF, Di Jiang5BC, Hongyan Jiang4AFG

DOI: 10.12659/MSM.906277

Med Sci Monit 2018; 24: MOL1712-1723

Abstract

BACKGROUND: MicroRNA 194 is involved in the differentiation of various types of cells, such as adipose derived stem cells, human embryonic stem cells, and bone marrow mesenchymal stem cells. Previously, we found that miR-194 was highly expressed in the inner ear sensory patch and neurons in mice embryos. However, the role of miR-194 in the development of the inner ear and its underlying mechanism have not been elucidated yet.

MATERIAL AND METHODS: The expression level of miR-194 has been altered by using antisense morpholino oligonucleotides (MO) and synthesized miRNAs in zebrafish.

RESULTS: We found that miR-194 was vastly expressed in the inner ear and central nervous system (CNS) in zebrafish. Loss of function of miR-194 could strongly affected the development of zebrafish embryos, including delayed embryonic development, edema of the pericardium, small head, axial deviation, delayed development of inner ear, closer location of two otoliths, delayed fusion of the semicircular canals, and abnormal otolith number in some cases. In addition, the behavior of zebrafish was also adversely affected with impaired balance and biased swimming route. Misexpression of miR-194 could strongly affected the development and differentiation of spiral ganglion neuron (SGN) in inner ear through Fgf4 in vitro. Similar results have also been observed that the overexpression and knockdown of miR-194 strongly disturbed the development and differentiation of the sensory patches and Statoacoustic ganglion (SAG) through Fgf4 in zebrafish in vivo. Our results indicated that miR-194 may regulate the development and differentiation of sensory patches and SAG through Fgf4.

CONCLUSIONS: Our data revealed a vital role of miR-194 in regulating the development and differentiation of the inner ear.

Keywords: Cell Dedifferentiation, Developmental Biology, Ear, Inner, Zebrafish

Add Comment 0 Comments

808 5

Editorial

01 June 2023 : Editorial  

Editorial: Infectious Disease Surveillance Using Artificial Intelligence (AI) and its Role in Epidemic and Pandemic Preparedness

Dinah V. Parums
Science Editor, Medical Science Monitor, International Scientific Information, Inc., Melville, NY, USA

DOI: 10.12659/MSM.941209

Med Sci Monit 2023; 29:e941209

In Press

01 Jun 2023 : Clinical Research  

Root Canal Numbers and Configurations in 1080 Permanent Canine Teeth in 270 Saudi Subjects Using Cone-Beam ...

Med Sci Monit In Press; DOI: 10.12659/MSM.940472  

01 Jun 2023 : Clinical Research  

Internal Orifice Alloy Closure: A New Procedure for Treatment of Perianal Fistulizing Crohn’s Disease

Med Sci Monit In Press; DOI: 10.12659/MSM.940873  

01 Jun 2023 : Clinical Research  

Effectiveness of Needle Aspiration versus Surgical Excision for Symptomatic Synovial Cysts of the Hip: A Si...

Med Sci Monit In Press; DOI: 10.12659/MSM.940187  

01 Jun 2023 : Clinical Research  

Influence of Insulin Resistance on Diabetes Nephropathy

Med Sci Monit In Press; DOI: 10.12659/MSM.939482  

Most Viewed Current Articles

13 Nov 2021 : Clinical Research  

Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...

DOI :10.12659/MSM.932788

Med Sci Monit 2021; 27:e932788

0:00

30 Dec 2021 : Clinical Research  

Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...

DOI :10.12659/MSM.935379

Med Sci Monit 2021; 27:e935379

08 Mar 2022 : Review article  

A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...

DOI :10.12659/MSM.936292

Med Sci Monit 2022; 28:e936292

01 Jan 2022 : Editorial  

Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Pa...

DOI :10.12659/MSM.935952

Med Sci Monit 2022; 28:e935952

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750