28 April 2018 : Animal Research
The Nephroprotective Effect of MS-275 on Lipopolysaccharide (LPS)-Induced Acute Kidney Injury by Inhibiting Reactive Oxygen Species (ROS)-Oxidative Stress and Endoplasmic Reticulum Stress
Haiyue Zhang1BCD, Wenbin Zhang1CF, Fangzhou Jiao1CD, Xun Li1CD, Hong Zhang2DF, Luwen Wang1EF, Zuojiong Gong1A*DOI: 10.12659/MSM.906362
Med Sci Monit 2018; 24: LBR2620-2630
Abstract
BACKGROUND: Histone deacetylase (HDAC) inhibitors can attenuate acute kidney injury (AKI)-mediated damage and reduce fibrosis in kidney disease models. The aim of the present study was to investigate the effects of the HDAC inhibitor MS-275 on lipopolysaccharide (LPS)-induced AKI and the associated mechanisms.
MATERIAL AND METHODS: A LPS-induced model in 6–8 weeks-old mice was established by intraperitoneal injection of LPS (10 mg/kg), with pre-treatment of MS-275 (2 mg/kg/day) administered intraperitoneally for five days. In addition, HK-2 cells were exposed to LPS (1 μg/mL) at 0.1 nM, 1 nM, 10 nM, and 100 nM. For our in vitro MS-275 study, detection programs included histology, biochemical, immunohistochemistry, mRNA and protein expression as well as apoptosis.
RESULTS: MS-275 ameliorated renal damage, enhanced the survival rate of the LPS-induced sepsis model, decreased the expressions of TNF-α, IL-1β, IL-6, COX-2, and NF-κBp65 nucleus translocation, suppressed the HDAC activity which was enhanced in septic AKI mice, and enhanced the acetylation of histone H3 and H4. Reactive oxygen species (ROS) production was enhanced in the kidney of LPS mice compared to control mice, while MS-275 suppressed the production of ROS in kidney tissue. In the in vitro studies, MS-275 reduced the LPS-induced apoptosis of HK-2 cells, inhibited ROS and MDA production, increased the production GSH and SOD activity, decreased the expressions of CHOP, GRP78, caspase3, and capase12, which was related to endoplasmic reticulum stress in LPS stimulated HK-2 cells.
CONCLUSIONS: MS-275 pre-treatment improved renal function and ameliorated histological alterations, inflammation, and ROS production in LPS-induced AKI mice and may act through inhibiting ROS-oxidative stress and endoplasmic reticulum stress.
Keywords: Endoplasmic reticulum stress, Sepsis
1420 12
Editorial
01 June 2023 : Editorial
Editorial: Infectious Disease Surveillance Using Artificial Intelligence (AI) and its Role in Epidemic and Pandemic PreparednessDOI: 10.12659/MSM.941209
Med Sci Monit 2023; 29:e941209
In Press
01 Jun 2023 : Clinical Research
Root Canal Numbers and Configurations in 1080 Permanent Canine Teeth in 270 Saudi Subjects Using Cone-Beam ...Med Sci Monit In Press; DOI: 10.12659/MSM.940472
01 Jun 2023 : Clinical Research
Internal Orifice Alloy Closure: A New Procedure for Treatment of Perianal Fistulizing Crohn’s DiseaseMed Sci Monit In Press; DOI: 10.12659/MSM.940873
01 Jun 2023 : Clinical Research
Effectiveness of Needle Aspiration versus Surgical Excision for Symptomatic Synovial Cysts of the Hip: A Si...Med Sci Monit In Press; DOI: 10.12659/MSM.940187
01 Jun 2023 : Clinical Research
Influence of Insulin Resistance on Diabetes NephropathyMed Sci Monit In Press; DOI: 10.12659/MSM.939482
Most Viewed Current Articles
13 Nov 2021 : Clinical Research
Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...DOI :10.12659/MSM.932788
Med Sci Monit 2021; 27:e932788
30 Dec 2021 : Clinical Research
Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...DOI :10.12659/MSM.935379
Med Sci Monit 2021; 27:e935379
08 Mar 2022 : Review article
A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...DOI :10.12659/MSM.936292
Med Sci Monit 2022; 28:e936292
01 Jan 2022 : Editorial
Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Pa...DOI :10.12659/MSM.935952
Med Sci Monit 2022; 28:e935952