11 January 2018 : Clinical Research
Evaluation of Oxidative Stress Levels and Antioxidant Enzyme Activities in Burst Fractures
Fetullah Kuyumcu1ABDEG, Abdurrahman Aycan1ACDF*DOI: 10.12659/MSM.908312
Med Sci Monit 2018; 24: CLR225-234
Abstract
BACKGROUND: Spinal burst fractures are pathologies that occur in spinal injuries and cause significant mortality and morbidity as a result. Burst fractures in spinal cord injuries can result in rapid and significant oxidative stress. In addition to the primary injury in severe spinal cord injuries, subsequent secondary lesions are mainly due to inflammatory cascade activation and excessive production of free radicals. This study evaluated oxidative stress and antioxidant enzyme levels in burst fractures.
MATERIAL AND METHODS: Twenty patients with burst fractures were diagnosed and underwent surgery and 20 healthy control subjects were included in the study. Neurological status was evaluated using the American Spine Injury Association Impairment Scale (ASIA) before and after surgery. Neurological function was scored as ASIA A: complete deficits, ASIA B–D: incomplete deficits, and ASIA E: neurologically intact. Spectrophotometry was performed to measure malondialdehyde (MDA) and low glutathione (GSH), glutathione peroxidase (GPx) levels, which represent lipid peroxide content. Evaluations were performed within 2 days after injury in the patients.
RESULTS: MDA levels were higher in the burst fracture group (p<0.001), whereas GSH and SOD activities were higher in the control group (both p<0.001). There was no statistically significant difference in GPx levels between the groups (p=0.482).
CONCLUSIONS: Oxidative stress appears to be related to burst fractures. Considering the importance of burst fractures in spinal cord injuries, a better understanding of these mechanisms may help in defining the role of oxidative stress after burst fractures. Prospective, randomized, controlled trials may reveal new therapeutic approaches that include antioxidants for explosive fractures focusing on oxidative stress.
Keywords: Glutathione Peroxidase, Malondialdehyde, Spinal Fractures
1794 12
Editorial
01 December 2023 : Editorial
Editorial: Outbreaks of Post-Pandemic Childhood Pneumonia and the Re-Emergence of Endemic Respiratory InfectionsDOI: 10.12659/MSM.943312
Med Sci Monit 2023; 29:e943312
In Press
08 Dec 2023 : Clinical Research
Association Between Influenza Vaccine Uptake and Health Awareness: A Cross-Sectional Questionnaire-Based St...Med Sci Monit In Press; DOI:
04 Dec 2023 : Animal Research
Effects of Intrathecal Ketamine on Cerebrospinal Fluid Levels of Brain-Derived Neurotrophic Factor and Mech...Med Sci Monit In Press; DOI:
01 Dec 2023 : Clinical Research
Risk Factors and Clinical Outcomes of COVID-19 Infection in Multiple Sclerosis Patients: A Retrospective St...Med Sci Monit In Press; DOI:
30 Nov 2023 : Review article
Decoding the Neurological Sequelae of General Anesthesia: A ReviewMed Sci Monit In Press; DOI:
Most Viewed Current Articles
13 Nov 2021 : Clinical Research
Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...DOI :10.12659/MSM.932788
Med Sci Monit 2021; 27:e932788
30 Dec 2021 : Clinical Research
Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...DOI :10.12659/MSM.935379
Med Sci Monit 2021; 27:e935379
14 Dec 2022 : Clinical Research
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
08 Mar 2022 : Review article
A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...DOI :10.12659/MSM.936292
Med Sci Monit 2022; 28:e936292