15 July 2018 : Laboratory Research
miR-145-5p Inhibits Vascular Smooth Muscle Cells (VSMCs) Proliferation and Migration by Dysregulating the Transforming Growth Factor-b Signaling Cascade
Li Li1ACE, Dingbiao Mao2CDF, Cheng Li2BCDF, Ming Li2ACEFG*DOI: 10.12659/MSM.910986
Med Sci Monit 2018; 24: LBR4894-4904
Abstract
BACKGROUND: There is accumulating evidence demonstrating that microRNAs (miRNA) play essential roles in proliferation, migration, and invasion of vascular smooth muscle cells (VSMCs). However, the exact function of these molecules and the mechanisms involved are not fully understood. In this study, we defined the role of miR-145-5p in VSMCs.
MATERIAL AND METHODS: This study used the PDGF-bb-induced VSMCs proliferation model. Expression of miR-145-5p and its target, Smad4, were detected and measured by real-time PCR and Western blot analysis. The luciferase reporter of miR-145-5p was used to elucidate miRNA-target interactions. The functions of miR-145-5p in proliferation and migration were detected by CCK-8 assay, Transwell assay, and scratch test.
RESULTS: This study demonstrates that miR-145-5p is downregulated in PDGF-mediated VSMCs in both time- and dose-dependent manners. The in vitro results suggest that overexpression of miR-145-5p results in a reduction in SMAD4 and an increase in SMAD2, Smad3, and TGF-β at the mRNA and protein levels. Overexpression of miR-145-5p inhibited PDGF-induced VSMCs proliferation and migration. Moreover, SMAD4 was identified as a direct target of miR-145-5p and is involved in PDGF-mediated VSMC proliferation. Downstream factors such as Smad2, Smad3, and TGF-β were also influenced by miR-145-5p.
CONCLUSIONS: We identify miR-145-5p as a novel regulator of VSMC. Moreover, miR-145-5p inhibits VSMCs proliferation and migration by directly targeting Smad4 and dysregulating the transforming growth factor-β signaling cascade, including Smad2, Smad3, and TGF-β.
Keywords: Muscle, Smooth, Vascular, Transforming Growth Factor beta
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Clinical Research
Quantifying Gait Asymmetry in Stroke Patients: A Statistical Parametric Mapping (SPM) ApproachMed Sci Monit In Press; DOI: 10.12659/MSM.946754
Laboratory Research
Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond StrengthMed Sci Monit In Press; DOI: 10.12659/MSM.946772
Clinical Research
Impact of Smovey Vibration Versus Dumbbell Resistance on Muscle Activation in WomenMed Sci Monit In Press; DOI: 10.12659/MSM.946567
Clinical Research
Five-Year Impact of Weight Loss on Knee Pain and Quality of Life in Obese PatientsMed Sci Monit In Press; DOI: 10.12659/MSM.946550
Most Viewed Current Articles
17 Jan 2024 : Review article 6,962,831
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 699,975
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 23,256
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 17,976
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912