14 January 2019 : Laboratory Research
Cimifugin Inhibits Inflammatory Responses of RAW264.7 Cells Induced by Lipopolysaccharide
Bin Han123ABCDF, Yuan Dai14ABC, Haiyan Wu3BC, Yuanyuan Zhang3DF, Lihong Wan3BF, Jianlei Zhao3CD, Yuanqi Liu3BCF, Shijun Xu14CEG*, Liming Zhou3AEDOI: 10.12659/MSM.912042
Med Sci Monit 2019; 25:409-417
Abstract
BACKGROUND: RAW264.7 cells are induced by lipopolysaccharide (LPS) as a rheumatoid arthritis (RA) model. The present study investigated the effect of cimifugin on the proliferation, migration, chemotaxis, and release of inflammation-related factors and inflammation-related signaling pathways of LPS-induced RAW264.7 cells.
MATERIAL AND METHODS: MTS assay was used to determine the proliferation of RAW264.7 cells. Transwell assay was employed to examine the migration and chemotaxis of the cells. ELISA was performed to measure the contents of chemotactic factors and inflammatory factors in cell culture supernatants. Western blotting was carried out to detect the expression of factors related with MAPKs and NF-κB signaling pathways.
RESULTS: Cimifugin (0–100 mg/L) had no cytotoxicity for RAW264.7 cells. LPS stimulation induced morphological differentiation of RAW264.7 cells, but intervention by cimifugin inhibited the activation effect by LPS by about 50%. Cimifugin (100 mg/L) decreased the migration and chemotaxis of RAW264.7 cells to 1/3 of that in control cells by decreasing the release of migration- and chemotaxis-associated factors by at least 30%. Cimifugin (100 mg/L) suppressed the release of inflammatory factors from RAW264.7 cells to less than 60% of that in the LPS group. In addition, cimifugin (100 mg/L) inhibited the activities of MAPKs and NF-κB signaling pathways.
CONCLUSIONS: The present study demonstrates that cimifugin reduces the migration and chemotaxis of RAW264.7 cells and inhibits the release of inflammatory factors and activation of related signaling pathways induced by LPS. Cimifugin may have potential pharmacological effects against RA.
Keywords: Cytokines, Felty syndrome, Anti-Inflammatory Agents, Arthritis, Rheumatoid, Chromones, Cyclooxygenase 2, Lipopolysaccharides, Macrophages, Models, Biological, Nitric Oxide, Nitric Oxide Synthase Type II, RAW 264.7 Cells
4266 200
Editorial
01 December 2023 : Editorial
Editorial: Outbreaks of Post-Pandemic Childhood Pneumonia and the Re-Emergence of Endemic Respiratory InfectionsDOI: 10.12659/MSM.943312
Med Sci Monit 2023; 29:e943312
In Press
01 Dec 2023 : Clinical Research
Risk Factors and Clinical Outcomes of COVID-19 Infection in Multiple Sclerosis Patients: A Retrospective St...Med Sci Monit In Press; DOI:
30 Nov 2023 : Review article
Decoding the Neurological Sequelae of General Anesthesia: A ReviewMed Sci Monit In Press; DOI:
30 Nov 2023 : Clinical Research
Enhanced Pain Relief and Muscle Growth in Individuals with Low Back Instability: The Impact of Blood Flow R...Med Sci Monit In Press; DOI:
29 Nov 2023 : Clinical Research
Comparative Analysis of Intramedullary Nail versus Plate Fixation for Fibula Fracture in Supination Externa...Med Sci Monit In Press; DOI:
Most Viewed Current Articles
13 Nov 2021 : Clinical Research
Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...DOI :10.12659/MSM.932788
Med Sci Monit 2021; 27:e932788
30 Dec 2021 : Clinical Research
Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...DOI :10.12659/MSM.935379
Med Sci Monit 2021; 27:e935379
14 Dec 2022 : Clinical Research
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
08 Mar 2022 : Review article
A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...DOI :10.12659/MSM.936292
Med Sci Monit 2022; 28:e936292