23 March 2019 : Laboratory Research
MicroRNA-744 Inhibits Proliferation of Bronchial Epithelial Cells by Regulating Smad3 Pathway via Targeting Transforming Growth Factor-β1 (TGF-β1) in Severe Asthma
Han Huang1AC, Hongxia Lu1CD, Lihong Liang1CD, Yueli Zhi1DE, Beibei Huo1EF, Linlin Wu1CE, Liping Xu1BF, Zhaobo Shen1AB*DOI: 10.12659/MSM.912412
Med Sci Monit 2019; 25:2159-2168
Abstract
BACKGROUND: Bronchial epithelial cells proliferation plays a pivotal role in airway remodeling in children with severe asthma. MicroRNAs (miRNAs) have gained great attention for many diseases, including asthma. The purpose of this study was to explore the mechanisms that underlie miR-744 modulating bronchial epithelial cells proliferation in severe asthma in children.
MATERIAL AND METHODS: Bronchial epithelial cells were isolated from bronchial biopsies of normal controls and asthmatic subjects. miR-744 and transforming growth factor-β1 (TGF-β1) expressions were measured by quantitative reverse transcription PCR (qRT-PCR). Proliferating cell nuclear antigen (PCNA), phosphorylation or total of mothers against decapentaplegic homolog3 (Smad3) and production of Smad anchor for receptor activation (SARA) were measured via Western blot analysis. A link between miR-744 and TGF-β1 was probed by luciferase activity and RNA immunoprecipitation. Cell proliferation was evaluated using the Cell Proliferation Assay Kit.
RESULTS: Severe asthma showed a significantly elevated cell proliferation rate and reduced abundance of miR-744, which in turn inhibited cell proliferation of bronchial epithelial cells. In particular, TGF-β1 might be a candidate target of miR-744, and enrichment of miR-744 lowered the expression of TGF-β1 at mRNA and protein levels. Indeed, overexpression of miR-744 lowered the proliferation rate of bronchial epithelial cells via driving TGF-β1. Moreover, addition of miR-744 limited phosphorylation of Smad3 but reversed SARA protein abundance by regulating TGF-β1.
CONCLUSIONS: The presence of miR-744 repressed bronchial epithelial cells proliferation through mediating the Smad3 pathway by modulating TGF-β1, providing a promising therapeutic approach for epithelial function in severe asthma.
Keywords: Bronchial Arteries, Transforming Growth Factor beta, Asthma, Bronchi, Child, Phosphorylation, RNA, Messenger, Respiratory Mucosa, Smad3 Protein
Editorial
01 February 2025 : Editorial
Editorial: Current Approaches to Screening for Lung Cancer in Smokers and Non-SmokersDOI: 10.12659/MSM.948255
Med Sci Monit 2025; 31:e948255
In Press
Clinical Research
Procedure Dynamics in Transfemoral vs Transradial Cerebral Angiography: A Retrospective StudyMed Sci Monit In Press; DOI: 10.12659/MSM.947603
Clinical Research
Predicting Cerebral Small Vessel Disease Burden Based on Thromboelastography in Patients with Acute Ischemi...Med Sci Monit In Press; DOI: 10.12659/MSM.946303
Clinical Research
Long-Term Outcomes of Implanon in Managing Adenomyosis: A 3-Year Prospective StudyMed Sci Monit In Press; DOI: 10.12659/MSM.945972
Laboratory Research
Linear Dimensional Accuracy in Maxillomandibular Records: A Comparative Study of Scannable and Transparent ...Med Sci Monit In Press; DOI: 10.12659/MSM.947265
Most Viewed Current Articles
17 Jan 2024 : Review article 6,969,459
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 701,879
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 25,628
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 20,173
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912