08 December 2018 : Animal Research
Abnormal DNA Methylation in Thoracic Spinal Cord Tissue Following Transection Injury
Gui-Dong Shi12ABCEF, Xiao-Lei Zhang12ABCE, Xin Cheng12B, Xu Wang12BD, Bao-You Fan12AC, Shen Liu12CF, Yan Hao12CF, Zhi-Jian Wei12CDF, Xian-Hu Zhou12BFG*, Shi-Qing Feng12BFGDOI: 10.12659/MSM.913141
Med Sci Monit 2018; 24: ANS8878-8890
Abstract
BACKGROUND: Spinal cord injury (SCI) is a serious disease with high disability and mortality rates, with no effective therapeutic strategies available. In SCI, abnormal DNA methylation is considered to be associated with axonal regeneration and cell proliferation. However, the roles of key genes in potential molecular mechanisms of SCI are not clear.
MATERIAL AND METHODS: Subacute spinal cord injury models were established in Wistar rats. Histological observations and motor function assessments were performed separately. Whole-genome bisulfite sequencing (WGBS) was used to detect the methylation of genes. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the DAVID database. Protein–protein interaction (PPI) networks were analyzed by Cytoscape software.
RESULTS: After SCI, many cavities, areas of necrotic tissue, and many inflammatory cells were observed, and motor function scores were low. After the whole-genome bisulfite sequencing, approximately 96 DMGs were screened, of which 50 were hypermethylated genes and 46 were hypomethylated genes. KEGG pathway analysis highlighted the Axon Guidance pathway, Endocytosis pathway, T cell receptor signaling pathway, and Hippo signaling pathway. Expression patterns of hypermethylated genes and hypomethylated genes detected by qRT-PCR were the opposite of WGBS data, and the difference was significant.
CONCLUSIONS: Abnormal methylated genes and key signaling pathways involved in spinal cord injury were identified through histological observation, behavioral assessment, and bioinformatics analysis. This research can serve as a source of additional information to expand understanding of spinal cord-induced epigenetic changes.
Keywords: DNA Methylation, Epigenomics, Nerve Regeneration, Spinal Cord Injuries
Editorial
01 December 2024 : Editorial
Editorial: The 2024 Revision of the Declaration of Helsinki and its Continued Role as a Code of Ethics to Guide Medical ResearchDOI: 10.12659/MSM.947428
Med Sci Monit 2024; 30:e947428
In Press
Clinical Research
Evaluating Lipiodol Efficacy in Proximal Tubal Occlusion Treatment: Single-Center Experience and Literature...Med Sci Monit In Press; DOI: 10.12659/MSM.946266
Review article
Impact of Traditional Chinese Medicine Antioxidants on Oxidative Stress and Drug-Induced Liver Injury: A Re...Med Sci Monit In Press; DOI: 10.12659/MSM.945147
Meta-Analysis
Reliability of Extraoral Scanners in Capturing 3D Geometry for Dental Prostheses: A Systematic ReviewMed Sci Monit In Press; DOI: 10.12659/MSM.946470
Review article
Skin Barrier Dysfunction in Acne Vulgaris: Pathogenesis and Therapeutic ApproachesMed Sci Monit In Press; DOI: 10.12659/MSM.945336
Most Viewed Current Articles
17 Jan 2024 : Review article 6,957,034
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
14 Dec 2022 : Clinical Research 1,969,335
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
16 May 2023 : Clinical Research 697,010
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
07 Jan 2022 : Meta-Analysis 263,050
Efficacy and Safety of Light Therapy as a Home Treatment for Motor and Non-Motor Symptoms of Parkinson Dise...DOI :10.12659/MSM.935074
Med Sci Monit 2022; 28:e935074