15 February 2019 : Animal Research
Simvastatin Improves Cardiac Hypertrophy in Diabetic Rats by Attenuation of Oxidative Stress and Inflammation Induced by Calpain-1-Mediated Activation of Nuclear Factor-κB (NF-κB)
QianQian Han12DE*, QianQian Liu1CF, Hui Zhang1CF, Meili Lu1BD, Hongxin Wang1BG, Futian Tang1AG, Yingjie Zhang2ADDOI: 10.12659/MSM.913244
Med Sci Monit 2019; 25:1232-1241
Abstract
BACKGROUND: Simvastatin, an HMG-CoA reductase inhibitor, has been reported to exert multiple protective effects on the cardiovascular system. However, the molecular mechanism remains to be examined. The present study was designed to study the effects of simvastatin on cardiac hypertrophy in diabetic rats and to explore its potential mechanism.
MATERIAL AND METHODS: Sprague-Dawley rats were assigned into a control (Con) group, a streptozotocin (STZ) group, and a STZ+simvastatin (STZ+SIM) group. The level of reactive oxygen species (ROS) was measured by using dihydroethidium (DHE) staining. The protein expressions of p65, IκBα, vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), calpain-1, and endothelial nitric oxide synthase (eNOS) were examined by Western blot analysis. qPCR was used to detect the levels of brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP).
RESULTS: Simvastatin improved the cardiac hypertrophy of diabetic rats, as demonstrated by decreases in the ratios of left ventricular weight/body weight (LVW/BW) and heart weight/body weight (HW/BW) and by the downregulation of mRNA expression of BNP and ANP in the heart tissue. Simvastatin decreased the protein expressions of VCAM-1, ICAM-1, IL-6, and TNF-α, increased eNOS protein expression, and limited an increase in ROS levels in the heart tissue. Simvastatin increased IkBa protein expression in cytoplasm and inhibited the translocation of p65, the subunit of nuclear factor-κB (NF-κB) to the nucleus from the cytoplasm of the heart tissue. Furthermore, simvastatin attenuated the activity of calpain and calpain-1 protein expression in heart tissue.
CONCLUSIONS: Simvastatin attenuates cardiac hypertrophy in diabetic rats, which might be due to the attenuation of oxidative stress and inflammation induced by calpain-1-mediated activation of NF-κB.
Keywords: Calpain, Diabetic Cardiomyopathies, Diabetes Complications, Diabetes Mellitus, Experimental, Intercellular Adhesion Molecule-1, NF-KappaB Inhibitor alpha, Nitric Oxide Synthase Type III, simvastatin, Streptozocin, Vascular Cell Adhesion Molecule-1
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Clinical Research
Quantifying Gait Asymmetry in Stroke Patients: A Statistical Parametric Mapping (SPM) ApproachMed Sci Monit In Press; DOI: 10.12659/MSM.946754
Laboratory Research
Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond StrengthMed Sci Monit In Press; DOI: 10.12659/MSM.946772
Clinical Research
Impact of Smovey Vibration Versus Dumbbell Resistance on Muscle Activation in WomenMed Sci Monit In Press; DOI: 10.12659/MSM.946567
Clinical Research
Five-Year Impact of Weight Loss on Knee Pain and Quality of Life in Obese PatientsMed Sci Monit In Press; DOI: 10.12659/MSM.946550
Most Viewed Current Articles
17 Jan 2024 : Review article 6,962,831
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 699,975
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 23,256
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 17,976
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912