Logo Medical Science Monitor

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo Medical Science Monitor Logo Medical Science Monitor Logo Medical Science Monitor

26 May 2019 : Laboratory Research  

Continuous Compressive Force Induces Differentiation of Osteoclasts with High Levels of Inorganic Dissolution

Rieko Matsuike1ABCDEF, Kumiko Nakai23ACDFG, Hideki Tanaka23ABDG, Manami Ozaki23DEF, Mai Kanda1DF, Maki Nagasaki1DF, Chika Shibata1DF, Kotoe Mayahara45DFG, Natsuko Tanabe36ADG, Ryosuke Koshi78B, Akira Nakajima45B, Takayuki Kawato23ACDEFG*, Masao Maeno9ADG, Noriyoshi Shimizu10DF, Mitsuru Motoyoshi45ADG

DOI: 10.12659/MSM.913674

Med Sci Monit 2019; 25:3902-3909

Abstract

BACKGROUND: Osteoclast precursor cells are constitutively differentiated into mature osteoclasts on bone tissues. We previously reported that the continuous stimulation of RAW264.7 precursor cells with compressive force induces the formation of multinucleated giant cells via receptor activator of nuclear factor κB (RANK)-RANK ligand (RANKL) signaling. Here, we examined the bone resorptive function of multinucleated osteoclasts induced by continuous compressive force.

MATERIAL AND METHODS: Cells were continuously stimulated with 0.3, 0.6, and 1.1 g/cm² compressive force created by increasing the amount of the culture solution in the presence of RANKL. Actin ring organization was evaluated by fluorescence microscopy. mRNA expression of genes encoding osteoclastic bone resorption-related enzymes was examined by quantitative real-time reverse transcription-polymerase chain reaction. Mineral resorption was evaluated using calcium phosphate-coated plates.

RESULTS: Multinucleated osteoclast-like cells with actin rings were observed for all three magnitudes of compressive force, and the area of actin rings increased as a function of the applied force. Carbonic anhydrase II expression as well as calcium elution from the calcium phosphate plate was markedly higher after stimulation with 0.6 and 1.1 g/cm² force than 0.3 g/cm². Matrix metalloproteinase-9 expression decreased and cathepsin K expression increased slightly by the continuous application of compressive force.

CONCLUSIONS: Our study demonstrated that multinucleated osteoclast-like cells induced by the stimulation of RAW264.7 cells with continuous compressive force exhibit high dissolution of the inorganic phase of bone by upregulating carbonic anhydrase II expression and actin ring formation. These findings improve our understanding of the role of mechanical load in bone remodeling.

Keywords: Bone Resorption, Carbonic Anhydrase II, cathepsin K, Matrix Metalloproteinase 9, Osteoclasts, RANK Ligand, Compressive Strength, RAW 264.7 Cells, Receptor Activator of Nuclear Factor-kappa B

Add Comment 0 Comments

Editorial

01 December 2024 : Editorial  

Editorial: The 2024 Revision of the Declaration of Helsinki and its Continued Role as a Code of Ethics to Guide Medical Research

Dinah V. Parums

DOI: 10.12659/MSM.947428

Med Sci Monit 2024; 30:e947428

0:00

In Press

Animal Research  

Histological Evaluation of the Effects of Intra-Articular Injection of Caffeic Acid on Cartilage Repair in ...

Med Sci Monit In Press; DOI: 10.12659/MSM.946845  

Clinical Research  

Impact of Clear Aligners vs Conventional Brackets on Oxidant and Antioxidant Levels: A Case-Control Study

Med Sci Monit In Press; DOI: 10.12659/MSM.946419  

Animal Research  

Accuracy of 3 Intraoral Scanners in Recording Impressions for Full Arch Dental Implant-Supported Prosthesis...

Med Sci Monit In Press; DOI: 10.12659/MSM.946624  

Clinical Research  

Shiga Toxin-Producing E. coli and Hemolytic Uremic Syndrome: A Study of the 2022 Outbreak in Turkey

Med Sci Monit In Press; DOI: 10.12659/MSM.946033  

Most Viewed Current Articles

17 Jan 2024 : Review article   6,956,586

Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron Variant

DOI :10.12659/MSM.942799

Med Sci Monit 2024; 30:e942799

0:00

14 Dec 2022 : Clinical Research   1,961,734

Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase Levels

DOI :10.12659/MSM.937990

Med Sci Monit 2022; 28:e937990

0:00

16 May 2023 : Clinical Research   696,847

Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...

DOI :10.12659/MSM.940387

Med Sci Monit 2023; 29:e940387

0:00

07 Jan 2022 : Meta-Analysis   262,907

Efficacy and Safety of Light Therapy as a Home Treatment for Motor and Non-Motor Symptoms of Parkinson Dise...

DOI :10.12659/MSM.935074

Med Sci Monit 2022; 28:e935074

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750