01 August 2019 : Hypothesis
Network Pharmacology-Based Pharmacological Mechanism of the Chinese Medicine Rhizoma drynariae Against Osteoporosis
Donghao Gan1ABCDEF, Xiaowei Xu1BCD, Deqiang Chen12CEF, Peng Feng1BDF, Zhanwang Xu13ADG*DOI: 10.12659/MSM.915170
Med Sci Monit 2019; 25:5700-5716
Abstract
Rhizoma drynariae is the main traditional Chinese medicine used for the treatment of osteoporosis, but its anti-osteoporotic targeting mechanism has not been fully elucidated due to the complexity of its active ingredients. In this study, the pharmacological mechanism of action of Rhizoma drynariae against osteoporosis was studied by integrating pharmacological concepts. The pharmacokinetic characteristics of selected major active constituents of Rhizoma drynariae and the SMILES structural similarity were used to predict related targets. A literature search was conducted to identify known osteoporosis treatment targets, which were then combined with the predicted targets to construct the direct or indirect target interaction network map of Rhizoma drynariae against osteoporosis. Finally, data on the key targets of the interactions, ranked according to relevant node parameters obtained through pathway enrichment analysis and screening of key targets and active ingredients of Rhizoma drynariae, were used to perform molecular docking simulation. We screened 16 active ingredients of Rhizoma drynariae, and 7 key targets with direct or indirect effects with a high frequency were obtained. These main pathways were found to play important roles in the PI3k-akt signaling pathway, osteoclast differentiation, Wnt signaling pathway, and estrogen signaling pathway. Molecular docking showed that most active ingredients of Rhizoma drynariae had strong binding efficiency with key targets. Based on network pharmacology, we conclude that Rhizoma drynariae plays an anti-osteoporotic role by directly or indirectly targeting multiple major signaling pathways and influencing the proliferation and differentiation of multiple types of cells.
Keywords: Molecular Mechanisms of Pharmacological Action, Osteoporosis, Protein Interaction Maps, Computer Simulation, Databases, Factual, Drug development, Drugs, Chinese Herbal, Molecular Docking Simulation, Pharmacokinetics, Pharmacological and Toxicological Phenomena, Polypodiaceae
Editorial
01 February 2025 : Editorial
Editorial: Current Approaches to Screening for Lung Cancer in Smokers and Non-SmokersDOI: 10.12659/MSM.948255
Med Sci Monit 2025; 31:e948255
In Press
Clinical Research
Pre- and Post-Surgical MRI Analysis of Levator Ani in Pelvic Organ Prolapse Patients: A Single-Center StudyMed Sci Monit In Press; DOI: 10.12659/MSM.945993
Clinical Research
Comparative Impact of Kinesio Taping and Post-Isometric Muscle Relaxation on Pain and Myofascial Mechanics ...Med Sci Monit In Press; DOI: 10.12659/MSM.945376
Clinical Research
Surgical Efficacy in Varicocele Ligation with Ephedrine-Assisted Blood Pressure ControlMed Sci Monit In Press; DOI: 10.12659/MSM.946234
Clinical Research
Retrospective Study to Compare Injury Patterns and Associations in 170 Patients Following Electric Scooter ...Med Sci Monit In Press; DOI: 10.12659/MSM.947155
Most Viewed Current Articles
17 Jan 2024 : Review article 6,968,277
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 701,791
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 25,442
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 20,020
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912