01 August 2019 : Hypothesis
Network Pharmacology-Based Pharmacological Mechanism of the Chinese Medicine Rhizoma drynariae Against Osteoporosis
Donghao Gan1ABCDEF, Xiaowei Xu1BCD, Deqiang Chen12CEF, Peng Feng1BDF, Zhanwang Xu13ADG*DOI: 10.12659/MSM.915170
Med Sci Monit 2019; 25:5700-5716
Abstract
ABSTRACT: Rhizoma drynariae is the main traditional Chinese medicine used for the treatment of osteoporosis, but its anti-osteoporotic targeting mechanism has not been fully elucidated due to the complexity of its active ingredients. In this study, the pharmacological mechanism of action of Rhizoma drynariae against osteoporosis was studied by integrating pharmacological concepts. The pharmacokinetic characteristics of selected major active constituents of Rhizoma drynariae and the SMILES structural similarity were used to predict related targets. A literature search was conducted to identify known osteoporosis treatment targets, which were then combined with the predicted targets to construct the direct or indirect target interaction network map of Rhizoma drynariae against osteoporosis. Finally, data on the key targets of the interactions, ranked according to relevant node parameters obtained through pathway enrichment analysis and screening of key targets and active ingredients of Rhizoma drynariae, were used to perform molecular docking simulation. We screened 16 active ingredients of Rhizoma drynariae, and 7 key targets with direct or indirect effects with a high frequency were obtained. These main pathways were found to play important roles in the PI3k-akt signaling pathway, osteoclast differentiation, Wnt signaling pathway, and estrogen signaling pathway. Molecular docking showed that most active ingredients of Rhizoma drynariae had strong binding efficiency with key targets. Based on network pharmacology, we conclude that Rhizoma drynariae plays an anti-osteoporotic role by directly or indirectly targeting multiple major signaling pathways and influencing the proliferation and differentiation of multiple types of cells.
Keywords: Medicine, Chinese Traditional, Molecular Mechanisms of Pharmacological Action, Osteoporosis, Protein Interaction Maps, China, Computer Simulation, Databases, Factual, Drug development, Drugs, Chinese Herbal, Molecular Docking Simulation, Pharmacokinetics, Pharmacological and Toxicological Phenomena, Polypodiaceae
Editorial
01 August 2022 : Editorial
Editorial: Long-Term Effects of Symptomatic and Asymptomatic SARS-CoV-2 Infection in Children and the Changing Pathogenesis of Common Childhood Viruses Driven by the COVID-19 PandemicDOI: 10.12659/MSM.937927
Med Sci Monit 2022; 28:e937927
In Press
08 Aug 2022 : Clinical Research
A 3-Year Clinical Evaluation of Endodontically Treated Posterior Teeth Restored with Resin Nanoceramic Comp...Med Sci Monit In Press; DOI: 10.12659/MSM.937331
08 Aug 2022 : Clinical Research
Hemoglobin/Red Blood Cell Distribution Width Ratio in Peripheral Blood Is Positively Associated with Progno...Med Sci Monit In Press; DOI: 10.12659/MSM.937146
05 Aug 2022 : Clinical Research
A Retrospective Study of 98 Elderly Patients with High-Risk Lateral Femoral Wall Intertrochanteric Hip Frac...Med Sci Monit In Press; DOI: 10.12659/MSM.936923
04 Aug 2022 : Clinical Research
Radiological Assessment of Prevalance and Quality of Periapical Status of Endodontic TreatmentsMed Sci Monit In Press; DOI: 10.12659/MSM.936569
Most Viewed Current Articles
30 Dec 2021 : Clinical Research
Retrospective Study of Outcomes and Hospitalization Rates of Patients in Italy with a Confirmed Diagnosis o...DOI :10.12659/MSM.935379
Med Sci Monit 2021; 27:e935379
13 Nov 2021 : Clinical Research
Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...DOI :10.12659/MSM.932788
Med Sci Monit 2021; 27:e932788
08 Mar 2022 : Review article
A Review of the Potential Roles of Antioxidant and Anti-Inflammatory Pharmacological Approaches for the Man...DOI :10.12659/MSM.936292
Med Sci Monit 2022; 28:e936292
01 Nov 2020 : Review article
Long-Term Respiratory and Neurological Sequelae of COVID-19DOI :10.12659/MSM.928996
Med Sci Monit 2020; 26:e928996