15 February 2020 : Animal Research
Inhibition of MiR-122 Decreases Cerebral Ischemia-reperfusion Injury by Upregulating DJ-1-Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN)/Phosphonosinol-3 Kinase (PI3K)/AKT
XinHong Xue1ABCDE, HongRu Wang1BCD, JiangLi Su2ABEG*DOI: 10.12659/MSM.915825
Med Sci Monit 2020; 26:e915825
Abstract
BACKGROUND: Ischemia-reperfusion injury is caused by a blood reperfusion injury in ischemic brain tissue, and usually occurs in the treatment stage of ischemic disease, which can aggravate brain tissue injury. MiR-122 is closely related to ischemia-reperfusion injury in the myocardium, kidney, and liver; however, the role in cerebral ischemia-reperfusion injury has not been established.
MATERIAL AND METHODS: In this study, cerebral ischemia-reperfusion injury was established in a rat model, and the control group was a sham-operated group. After ischemia-reperfusion injury for 6, 12, and 24 hours, brain tissue specimens were collected and the expression of miR-122 and DJ-1 were determined using quantitative real-time polymerase chain reaction. Flow cytometry was used to determine the reactive oxygen species (ROS) content. The modified Neurological Severity Score (mNSS) scale was used to evaluate the sensory and motor function defects of the rats. The malondialdehyde (MDA), superoxide dismutase (SOD), and enzyme activity were determined. The rats in the cerebral ischemia-reperfusion injury model were divided into 2 groups (antagomir-NC group and antagomir miR-122 group). Brain neuron RN-c cells were divided into the following 4 groups: antagomir-NC, antagomir miR-122, pIRES2-blank, and pIRES2-DJ-1. Seventy-two hours after transfection, ischemia-reperfusion treatment was carried out and conventional cultured RN-c cells were used as the control group. Flow cytometry was used to detect apoptosis and western blot was used to detect the expression of DJ-1, PTEN, AKT, and p-AKT.
RESULTS: The expression of miR-122 increased significantly in the process of ischemia-reperfusion damage after cerebral infarction, while the expression of DJ-1 decreased significantly. Downregulation of miR-122 significantly increased the expression of DJ-1, enhanced the activity of the PTEN/PI3K/AKT pathway, reduced cell apoptosis, and alleviated cerebral ischemia-reperfusion injury.
CONCLUSIONS: Inhibition of miR-122 can decrease cerebral ischemia-reperfusion injury by upregulating DJ-1-PTEN/PI3K/AKT pathway.
Keywords: cerebral infarction, Antagomirs, Brain Ischemia, Computational Biology, Protein Deglycase DJ-1
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Clinical Research
Factors Affecting Medication Adherence in Middle-Aged and Elderly Patients in China: A Cross-Sectional StudyMed Sci Monit In Press; DOI: 10.12659/MSM.945805
Review article
Characteristics and Associated Risk Factors of Broad Ligament Hernia: A Systematic ReviewMed Sci Monit In Press; DOI: 10.12659/MSM.946710
Clinical Research
Cost-Effective Day Surgery for Arteriovenous Fistula Stenosis: A Viable Model for Hemodialysis PatientsMed Sci Monit In Press; DOI: 10.12659/MSM.946128
Clinical Research
Impact of Periodontal Treatment on Early Rheumatoid Arthritis and the Role of Porphyromonas gingivalis Anti...Med Sci Monit In Press; DOI: 10.12659/MSM.947146
Most Viewed Current Articles
17 Jan 2024 : Review article 6,963,777
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 700,314
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 23,719
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 18,460
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912