23 September 2019 : Animal Research
Astragaloside IV Alleviates the Myocardial Damage Induced by Lipopolysaccharide via the Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB)/Proliferator-Activated Receptor α (PPARα) Signaling Pathway
Xiaoyao Zhang1ABCDEF*, Mengfei Li1AF, Hongxin Wang1ABCDEFGDOI: 10.12659/MSM.916030
Med Sci Monit 2019; 25:7158-7168
Abstract
BACKGROUND: We previously reported that astragaloside IV (As-IV) can alleviate myocardial damage induced by lipopolysaccharide (LPS). However, the anti-inflammatory effects of As-IV following LPS stimulation in mice and H9C2 cardiomyocytes remain unclear. The present study was designed to explore the mechanism of action of As-IV.
MATERIAL AND METHODS: In vivo, C57BL/6J mice were randomly divided into 5 groups: the control group, the LPS group (10 mg/kg), and 3 LPS groups receiving different doses of As-IV (20, 40, and 80 mg/kg). The protective effect of As-IV on LPS-stimulated H9C2 cardiomyocytes was evaluated in vitro. Cardiac function was detected by echocardiography, and H&E staining was used to evaluate morphologic changes. Cardiomyocyte viability was detected by MTT assay. ELISA was used to detect free fatty acid (FFA), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor alpha (TNF-α) levels in mouse serum and in cell supernatant. Adenosine triphosphate (ATP) and adenosine monophosphate (AMP) contents in myocardial tissues and cells were detected by high-performance liquid chromatography. ATP5D and TLR4/NF-κB/PPARα signaling pathway proteins (TLR4, NF-κB, p65, and PPARα) were detected by Western blotting.
RESULTS: As-IV significantly improved cardiac function, myocardial cell viability, and pathological changes and reduced FFA, IL-1β, IL-6, and TNF-α levels. The ATP/AMP ratio in the cardiac tissues of mice and in H9C2 cardiomyocytes was increased compared to that in the LPS group. In addition, As-IV enhanced ATP synthase and PPARα protein expression. In H9C2 cardiomyocytes, the p65-specific inhibitor BAY11-7082 exerted similar effects as As-IV.
CONCLUSIONS: As-IV alleviates LPS-induced myocardial damage by modulating TLR4/NF-κB/PPARα signaling-mediated energy biosynthesis.
Keywords: Lipopolysaccharides, PPAR alpha, Heart, Interleukin-6, Saponins
Editorial
01 February 2025 : Editorial
Editorial: Current Approaches to Screening for Lung Cancer in Smokers and Non-SmokersDOI: 10.12659/MSM.948255
Med Sci Monit 2025; 31:e948255
In Press
Clinical Research
Predicting Cerebral Small Vessel Disease Burden Based on Thromboelastography in Patients with Acute Ischemi...Med Sci Monit In Press; DOI: 10.12659/MSM.946303
Clinical Research
Long-Term Outcomes of Implanon in Managing Adenomyosis: A 3-Year Prospective StudyMed Sci Monit In Press; DOI: 10.12659/MSM.945972
Laboratory Research
Linear Dimensional Accuracy in Maxillomandibular Records: A Comparative Study of Scannable and Transparent ...Med Sci Monit In Press; DOI: 10.12659/MSM.947265
Clinical Research
Efficacy of King's Combined Uterine Suture in Managing Placenta Accreta: A Retrospective AnalysisMed Sci Monit In Press; DOI: 10.12659/MSM.945826
Most Viewed Current Articles
17 Jan 2024 : Review article 6,969,932
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 701,896
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 25,741
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 20,253
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912