23 June 2019 : Laboratory Research
The Effects of Plumbagin on Pancreatic Cancer: A Mechanistic Network Pharmacology Approach
Qijin Pan1BCD, Rui Zhou2BD, Min Su3CF, Rong Li3ABEG*DOI: 10.12659/MSM.917240
Med Sci Monit 2019; 25:4648-4654
Abstract
BACKGROUND: This study aimed to use a network pharmacology approach to establish the effects of plumbagin on pancreatic cancer (PC) and to predict core targets and biological functions, pathways, and mechanisms of action.
MATERIAL AND METHODS: Genes associated with the pathogenesis of PC were obtained from a database of gene-disease associations (DisGeNET). Putative genes associated with plumbagin were identified from the databases of drug target identification (PharmMapper), target prediction of bioactive components (SwissTargetPrediction), and comprehensive drug target information (DrugBank). PC targets of plumbagin were harvested by using a functional enrichment analysis tool (FunRich). The data of function-related protein-protein interactions (PPIs) with a confidence score >0.9 were obtained by using functional protein association networks (STRING). The network interactions of plumbagin and PC targets and function-related proteins were constructed through complex network analysis and visualization (Cytoscape). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were used to identify the effects of plumbagin.
RESULTS: The most important biotargets for plumbagin in PC were identified as TP53, MAPK1, BCL2, and IL6. A total of 1,731 annotations and 121 enriched pathways for plumbagin and PC were identified by KEGG and GO analysis. The top 10 signaling pathways of plumbagin and PC were screened, followed by identification of biological components and functions.
CONCLUSIONS: Network pharmacology established the effects of plumbagin on PC, predicted core targets, biological functions, pathways, and mechanisms of action. Further studies are needed to validate these predictive biotargets in PC.
Keywords: Health Care Evaluation Mechanisms, Medical Oncology, Pharmacology, Biomarkers, Tumor, Computational Biology, gene ontology, Gene Regulatory Networks, Naphthoquinones, Pancreatic Neoplasms, Protein Interaction Maps
Editorial
01 January 2025 : Editorial
Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?DOI: 10.12659/MSM.947707
Med Sci Monit 2025; 31:e947707
In Press
Clinical Research
Impact of Periodontal Treatment on Early Rheumatoid Arthritis and the Role of Porphyromonas gingivalis Anti...Med Sci Monit In Press; DOI: 10.12659/MSM.947146
Clinical Research
C-Reactive Protein, Uric Acid, and Coronary Artery Ectasia in Patients with Coronary Artery DiseaseMed Sci Monit In Press; DOI: 10.12659/MSM.947158
Clinical Research
Effects of Remote Exercise on Physical Function in Pre-Frail Older Adults: A Randomized Controlled TrialMed Sci Monit In Press; DOI: 10.12659/MSM.947105
Database Analysis
Development and Validation of a Competitive Risk Model in Elderly Patients with Transitional Cell Bladder C...Med Sci Monit In Press; DOI: 10.12659/MSM.946332
Most Viewed Current Articles
17 Jan 2024 : Review article 6,964,204
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 700,526
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 24,009
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 18,806
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912