Logo Medical Science Monitor

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo Medical Science Monitor Logo Medical Science Monitor Logo Medical Science Monitor

02 March 2020 : Laboratory Research  

Spalt-Like Protein 4 (SALL4) Promotes Angiogenesis by Activating Vascular Endothelial Growth Factor A (VEGFA) Signaling

Jinbo Sun1ABCDEF, Zhining Zhao2BCF, Wei Zhang1BF, Qisheng Tang1BF, Fan Yang1BF, Xiangnan Hu1CD, Chong Liu3CF, Bin Song1ADE*, Bo Zhang1ACE, He Wang1ADG

DOI: 10.12659/MSM.920851

Med Sci Monit 2020; 26:e920851

Abstract

BACKGROUND: Spalt-like protein 4 (SALL4) is a nuclear transcription factor central to early embryonic development, especially for regulating pluripotency of embryonic stem cells (ESCs) and sustaining ESCs self-renewal. Aberrant re-expression of SALL4 in adult tissues is involved in tumorigenesis and cancer progression. However, the role of SALL4 in angiogenesis remains elusive. Here, we determined the potential action of SALL4 on proliferation, migration, and tube formation of endothelial cells.

MATERIAL AND METHODS: HUVECs were infected with lentiviral particles expressing shRNA against SALL4. QRT-PCR and immunoblotting analysis were carried out to evaluate knockdown efficiency at mRNA and protein levels. Cell proliferation was measured by CCK-8 assay and flow cytometry was conducted to analyze cell cycle distribution. Wound-healing and Transwell migration assays were performed to evaluate cell motility. In addition, we determined the role of SALL4 on angiogenesis by tube formation assay, and Western blot analysis was used to assess the effect of SALL4 downregulation on VEGFA expression.

RESULTS: We found that SALL4 downregulation resulted in decreased proliferation. Cell cycle analysis revealed that SALL4 knockdown impeded cell cycle progression and induced cell cycle arrest at G1 phase. We also found that silencing of SALL4 decreased the capacity of wound healing and cell migration in HUVECs. Furthermore, tube formation assay showed that loss of SALL4 inhibited HUVECs angiogenesis. We also observed that SALL4 knockdown reduced the level of VEGFA in HUVECs.

CONCLUSIONS: In conclusion, these results support that by promoting proliferation, cell cycle progression, migration, and tube formation, SALL4 is involved in the process of angiogenesis through modulating VEGFA expression.

Keywords: Angiogenic Proteins, endothelial cells, G1 Phase, Gene Expression Regulation, Neovascularization, Physiologic, Transcription Factors

Add Comment 0 Comments

Editorial

01 January 2025 : Editorial  

Editorial: The Human Cell Atlas. What Is It and Where Could It Take Us?

Dinah V. Parums

DOI: 10.12659/MSM.947707

Med Sci Monit 2025; 31:e947707

0:00

In Press

Clinical Research  

Impact of Periodontal Treatment on Early Rheumatoid Arthritis and the Role of Porphyromonas gingivalis Anti...

Med Sci Monit In Press; DOI: 10.12659/MSM.947146  

Clinical Research  

C-Reactive Protein, Uric Acid, and Coronary Artery Ectasia in Patients with Coronary Artery Disease

Med Sci Monit In Press; DOI: 10.12659/MSM.947158  

Clinical Research  

Effects of Remote Exercise on Physical Function in Pre-Frail Older Adults: A Randomized Controlled Trial

Med Sci Monit In Press; DOI: 10.12659/MSM.947105  

Database Analysis  

Development and Validation of a Competitive Risk Model in Elderly Patients with Transitional Cell Bladder C...

Med Sci Monit In Press; DOI: 10.12659/MSM.946332  

Most Viewed Current Articles

17 Jan 2024 : Review article   6,964,204

Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron Variant

DOI :10.12659/MSM.942799

Med Sci Monit 2024; 30:e942799

0:00

16 May 2023 : Clinical Research   700,526

Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...

DOI :10.12659/MSM.940387

Med Sci Monit 2023; 29:e940387

0:00

01 Mar 2024 : Editorial   24,009

Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...

DOI :10.12659/MSM.944204

Med Sci Monit 2024; 30:e944204

0:00

28 Jan 2024 : Review article   18,806

A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and Future

DOI :10.12659/MSM.943912

Med Sci Monit 2024; 30:e943912

0:00

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750