04 April 2020 : Laboratory Research
Anticancer Effect of Radix Astragali on Cholangiocarcinoma In Vitro and Its Mechanism via Network Pharmacology
Yixiu Wang1ABCDEF, Bingzi Dong2ABCD, Weijie Xue1ADF, Yujie Feng1BCD, Chenyu Yang1BE, Peng Liu1CF, Jingyu Cao1ACFG*, Chengzhan Zhu12ACFGDOI: 10.12659/MSM.921162
Med Sci Monit 2020; 26:e921162
Abstract
BACKGROUND: This study used network pharmacology method and cell model to assess the effects of Radix Astragali (RA) on cholangiocarcinoma (CCA) and to predict core targets and molecular mechanisms.
MATERIAL AND METHODS: We performed an in vitro study to assess the effect of RA on CCA using CCK8 assay, the Live-Cell Analysis System, and trypan blue staining. The components and targets of RA were analyzed using the Traditional Chinese Medicine Systems Pharmacology database, and genes associated with CCA were retrieved from the GeneCards and OMIM platforms. Protein–protein interactions were analyzed with the STRING platform. The components–targets–disease network was built by Cytoscape. The TIMER database revealed the expression of core targets with diverse immune infiltration levels. GO and KEGG analyses were performed to identify molecular-biology processes and signaling pathways. The predictions were verified by Western blotting.
RESULTS: Concentration-dependent antitumor activity was confirmed in the cholangiocarcinoma QBC939 cell line treated with RA. RA contained 16 active compounds, with quercetin and kaempferol as the core compounds. The most important biotargets for RA in CCA were caspase 3, MAPK8, MYC, EGFR, and PARP. The TIMER database revealed that the expression of caspase3 and MYC was related with diverse immune infiltration levels of CCA. The results of Western blotting showed RA significantly influenced the expression of the 5 targets that network pharmacology predicted.
CONCLUSIONS: RA is an active medicinal material that can be developed into a safe and effective multi-targeted anticancer treatment for CCA.
Keywords: Cholangiocarcinoma, Pharmacologic Actions, Antineoplastic Agents, Phytogenic, Astragalus propinquus, Bile Duct Neoplasms, Drugs, Chinese Herbal
Editorial
01 March 2025 : Editorial
Editorial: The World Health Organization (WHO) Updated List of Emerging and Potentially Pandemic Pathogens Includes Yersinia pestis as Plague Vaccines Await Clinical TrialsDOI: 10.12659/MSM.948672
Med Sci Monit 2025; 31:e948672
In Press
Clinical Research
Impact of Cholecalciferol Supplementation on Radiotherapy Outcomes in Advanced Cervical CancerMed Sci Monit In Press; DOI: 10.12659/MSM.945964
Clinical Research
Inflammatory Biomarkers in Smokers: Implications for Ligamentum Flavum HypertrophyMed Sci Monit In Press; DOI: 10.12659/MSM.947508
Clinical Research
Balancing Image Quality and Iodine Intake: Insights from CT Spectral Imaging of the Portal VeinMed Sci Monit In Press; DOI: 10.12659/MSM.947391
Review article
Regulatory Efforts and Health Implications of Energy Drink Consumption by Minors in PolandMed Sci Monit In Press; DOI: 10.12659/MSM.947124
Most Viewed Current Articles
17 Jan 2024 : Review article 7,160,485
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 702,385
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 27,806
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 22,071
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912