05 May 2020 : Animal Research
Exosomes Derived from Bone Marrow Stromal Cells (BMSCs) Enhance Tendon-Bone Healing by Regulating Macrophage Polarization
Youxing Shi1ABCDEF, Xia Kang1ACE, Yunjiao Wang1CD, Xuting Bian1CF, Gang He1B, Mei Zhou1B, Kanglai Tang1ACEFG*DOI: 10.12659/MSM.923328
Med Sci Monit 2020; 26:e923328
Abstract
BACKGROUND: Inflammation after tendon-bone junction injury results in the formation of excessive scar tissue and poor biomechanical properties. Recent research has shown that exosomes derived from bone marrow stromal cells (BMSCs) can modulate inflammation during tissue healing. Thus, our study aimed to enhance tendon-bone healing by use of BMSC-derived exosomes (BMSC-Exos).
MATERIAL AND METHODS: The mouse tendon-bone reconstruction model was established, and the mice were randomly divided into 3 groups: the control group, the hydrogel group, and the hydrogel+exosome group, with 30 mice in each group. At 7 days, 14 days, and 1 month after surgery, tendon-bone junction samples were harvested, and the macrophage polarization and tendon-bone healing were evaluated based on histology, immunofluorescence, and quantitative RT-PCR (qRT-PCR) analysis.
RESULTS: In the early phase, we observed significantly higher numbers of M2 macrophages and more anti-inflammatory and chondrogenic-related factors in the hydrogel+BMSC-Exos group compared with the control group and the hydrogel group. The M1 macrophages and related proinflammatory factors decreased. Cell apoptosis decreased in the hydrogel+BMSC-Exos group, while cell proliferation increased; in particular, the CD146+ stem cells substantially increased. At 1 month after surgery, there was more fibrocartilage in the hydrogel+BMSC-Exos group than in the other groups. Biomechanical testing showed that the maximum force, strength, and elastic modulus were significantly improved in the hydrogel+BMSC-Exos group.
CONCLUSIONS: Our study provides evidence that the local administration of BMSC-Exos promotes the formation of fibrocartilage by increasing M2 macrophage polarization in tendon-to-bone healing, leading to improved biomechanical properties. These findings provide a basis for the potential clinical use of BMSC-Exos in tendon-bone repair.
Keywords: Bone-Patellar Tendon-Bone Grafts, exosomes, Macrophages, mesenchymal stromal cells, Bone Marrow Cells, Macrophage Activation, Mesenchymal Stem Cell Transplantation, Tendon Injuries, Tendons, Wound Healing
Editorial
01 March 2025 : Editorial
Editorial: The World Health Organization (WHO) Updated List of Emerging and Potentially Pandemic Pathogens Includes Yersinia pestis as Plague Vaccines Await Clinical TrialsDOI: 10.12659/MSM.948672
Med Sci Monit 2025; 31:e948672
In Press
Clinical Research
Exploring the Association Between Serum Neurogranin, Nardilysin, and Ischemic Stroke: A Case-Control Study ...Med Sci Monit In Press; DOI: 10.12659/MSM.947703
Clinical Research
Comparative Analysis of Laser Therapies for Striae Distensae: Fractional CO₂ vs Combined Q-Switch Nd:YAGMed Sci Monit In Press; DOI: 10.12659/MSM.947464
Database Analysis
Utility of Central Venous Oxygen Saturation Gradient in Predicting Mortality in Dialysis with Catheter AccessMed Sci Monit In Press; DOI: 10.12659/MSM.947298
Clinical Research
Intraoperative Renal Near-Infrared Spectroscopy Monitoring as a Predictor of Renal Outcomes in Cardiac SurgeryMed Sci Monit In Press; DOI: 10.12659/MSM.947462
Most Viewed Current Articles
17 Jan 2024 : Review article 7,094,149
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
16 May 2023 : Clinical Research 702,321
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
01 Mar 2024 : Editorial 27,595
Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and ...DOI :10.12659/MSM.944204
Med Sci Monit 2024; 30:e944204
28 Jan 2024 : Review article 21,787
A Review of IgA Vasculitis (Henoch-Schönlein Purpura) Past, Present, and FutureDOI :10.12659/MSM.943912
Med Sci Monit 2024; 30:e943912