22 December 2011
Cranioplasty prosthesis manufacturing based on reverse engineering technology
Robert ChrzanABCEF, Andrzej UrbanikABCEFG, Krzysztof KarbowskiABCF, Marek MoskałaABCF, Jarosław PolakABCF, Marek PyrichABCFDOI: 10.12659/MSM.882186
Med Sci Monit 2012; 18(1): MT1-6
Abstract
Background: Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing.
Material/Methods: CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared.
Results: In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes.
Conclusions: Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material.
Keywords: Prostheses and Implants, Craniotomy - adverse effects, Computer-Aided Design, Bone Resorption - surgery, Biomedical Engineering - methods, Reconstructive Surgical Procedures - methods, Skull
Editorial
01 November 2024 : Editorial
Editorial: Artificial Intelligence (AI), Digital Image Analysis, and the Future of Cancer Diagnosis and PrognosisDOI: 10.12659/MSM.947038
Med Sci Monit 2024; 30:e947038
In Press
Review article
Comprehensive Insights into Arecoline Hydrobromide: Pharmacology, Toxicity, and PharmacokineticsMed Sci Monit In Press; DOI: 10.12659/MSM.945582
Clinical Research
Iliac Periosteal Bone Autografting vs Talus Non-Weight-Bearing Surgery in Hepple V Talus Osteochondral Inju...Med Sci Monit In Press; DOI: 10.12659/MSM.944912
Clinical Research
Impact of Different Orthodontic Appliances on Mandibular Condyle, Anterior Region of Mandibular, and Maxill...Med Sci Monit In Press; DOI: 10.12659/MSM.946265
Clinical Research
Risk Factors for Bone Cement Displacement After Percutaneous Kyphoplasty in Osteoporotic Vertebral Fracture...Med Sci Monit In Press; DOI: 10.12659/MSM.945884
Most Viewed Current Articles
17 Jan 2024 : Review article 6,371,831
Vaccination Guidelines for Pregnant Women: Addressing COVID-19 and the Omicron VariantDOI :10.12659/MSM.942799
Med Sci Monit 2024; 30:e942799
14 Dec 2022 : Clinical Research 1,909,013
Prevalence and Variability of Allergen-Specific Immunoglobulin E in Patients with Elevated Tryptase LevelsDOI :10.12659/MSM.937990
Med Sci Monit 2022; 28:e937990
16 May 2023 : Clinical Research 695,468
Electrophysiological Testing for an Auditory Processing Disorder and Reading Performance in 54 School Stude...DOI :10.12659/MSM.940387
Med Sci Monit 2023; 29:e940387
07 Jan 2022 : Meta-Analysis 260,595
Efficacy and Safety of Light Therapy as a Home Treatment for Motor and Non-Motor Symptoms of Parkinson Dise...DOI :10.12659/MSM.935074
Med Sci Monit 2022; 28:e935074